ﬁié—ﬁgnﬂmﬂlﬁnnb"

The Islamic University - Gaza

1150 : gl | ikl bl | i}y el | B2
35/t vz

17— 52012/09/18 iyl

Tate sosmmasmuine s Fopladt

ey 2§) (ol oS e
s gl o aSal) diad 03 e 5 i L) Zealally L) cilul) salee il ge e 3Ly
Sasleal Lo ool AIS (8 i waldll s J) QAL Gniadll 38 Sl [l
tlee s 5o 5 cila gl Lin 51505 gali
Automatic Arabic Domain-Relevant Term Extraction

Alal) deludl 22012/09/18 Gl sall 21433 saxill 53 02 $UDEN o ol ass 3l AL aay
toe A8l g da g plaY) e oSall Zial Cuadial (ilua s jie

Lol) 9 18 i A gl)
Ltals Ladli Gl ilas £
o A Ga s Ladlia Ot o ol i gy .8

by [cloplead LaglpiSi 408 5 sl 4y Gl e dall Cuad Agadl sy
_ cilaglaall L ol 433
.4.:!:‘,‘,4.9.:&.54,.-54.4.!:Mo/}actbeﬂjdlg‘,@@aﬁq.gljéJﬂo& daded J Lialllg

17’ C,i_,_:‘_\})f)&b
l,,\h.“ C'.iLu\J.\]\ Al

Q.\O ’
\ o, ‘\ﬂ :

BEVEPL N St

PO. Box 108, Rimal, Gaza, Palestine fax: +970 (8) 286 0800 sy Tel: +970 (8) 286 0700 _ists otassds 852 Jloplt 108 .o

public@ivgaza.edu.ps www.iugaza.edu.ps

www.manharaa.com

JO VARG T

Islamic University of Gaza
Deanery of Post Graduate Studies
Faculty of Information Technology

Automatic Arabic Domain-Relevant
Term Extraction
By:
Manar S. Fayyad
Supervised By:

Dr. Rebhi Baraka

A Thesis Submitted as Partial Fulfillment of the Requirements for
the Degree of Master in Information Technology

Sep. 2012 - Shawwal 1433 H

www.manaraa.com

Dedication

Ty flomily

T my friends
T my profesiars and teachers
T lerm extraclion researdhers

T WMiastims

www.manharaa.com

Acknowledgement

First of all thanks to Allah for the gift of Islam and for guiding
me in accomplishing this research.

| would like to thank my parents for their support. | extend my
thanks to all my family members.

| am very thankful to my supervisor, Dr. Rebhi Baraka, for his
enormous support, valuable guide, and assistance throughout the
work of this research.

Special thanks to all members of IT faculty at the Islamic
university of Gaza for passing their knowledge to me.

Also | would like to thank every natural language processing
teacher, researcher or doctor that his knowledge passed to me
through his writings which guides me through my work.

www.manaraa.com

Abstract

Term extraction from text corpus is an important step in knowledge acquisition and it
is the first step in many Natural Language Processing (NLP) methods and computer lingual
systems. In Arabic language there are some works in the field of term extraction and few of
them try to extract domain-relevant terms.

In this research a model for automatic Arabic domain-relevant term extraction from
text corpus was proposed. The proposed model uses a hybrid approach composed of
linguistic and statistical methods to extract terms relevant to specific domains depending
on prevalence and tendency term ranking mechanism.

In order to realize the proposed model a multi domain corpus separated into 10
domains (Economic, History, Education and family, Religious and Fatwa's, Sport, Health,
Astronomy, Low, Stories, and Cooking recipes) was used. Then this corpus preprocessed
by removing non Arabic letters, punctuations, diacritics, and stop words. Then a candidate
terms vector was extracted using a sliding window with variant length dropping the
windows that contain a stop word.

Candidate terms have been ranked using Termhood method as a statistical method that
measures the distributional behavior of candidate terms within the domain and across the
rest of the corpus.

Then Candidate terms have been distributed over the domains depending on the higher
rank result for the extracted terms constructing a domain term matrix. This matrix has been
used in a simple classifier that classifies the testing corpus. The final step gives us a
confusion matrix that indicates that the domain term matrix worked as a best classifier
achieving an accuracy rate of 100% for some domains and very good in others. The total
accuracy of the classifier was 95%. This is a highly accurate classifier.

Keywords: Preprocessing, Stemming, light stemming, Arabic Term Extraction, Terms,
Domain-Relevant Term Extraction.

www.manaraa.com

udlall

ghiiu) dlee B Adls shd JSi pagaill w (Term extraction) clallad) zhasul ()
Laphall Alall dalls Gllee o i B S clghall s*s (Knowledge acquisition) 4 sl
Ll gsiua e (Computer lingual systems) asalll jisneSll olaig (Natural language processing)
iyl lallaad) alle lgie Qi) (Sl clallad) hatu) Allas s) JleY) e aaall dllia 4y5a1)
‘O dlaay
Ao gane (o e Jlaas Ahidl Lyl clallad) zhatd W bl 218 8 Sadl 1 b
Slallaad) 7 1Ay dlanly Gl bl ge 0 (s e w2305 75l gisail e agea
G2y anldy Jlaadl Jal mllaad) 1 sl e blde) Jaall 1) Lutwlj Aae Jlae Adall @l
ol 1agy adali))

& L Lyje (Gasal ol Cilatise de sana) (COMPUS) S prsid = jiall 7 3gaill (a3 Jal (e
(pandd (il el daia daly dued gslily G el By L Gl ol a cYlae Be
e cagall AL (Light stemming) daadan 4l dallae latival) 038 dallae 23 & L (CDS)y Gldiay
ey LalEiaY) aa (pl23nuY) d5LE) (Stop words) 4d g8 sall lalSlly JiSiill lSjay ad il Gladle g dpall
Aol dadpall clallaad) zhaiuly W & (e dadyell clalliad) #hatu) e S5 Y e 5,89
Gl e gind A elpludl) blis) &5 Cua ddlise Jlskls (Sliding window) il @bl ool
(Adghsa

e)y s e 2Ly (Candidate terms) daiyall Glallhad) (o sllacas S a2 D 2ay
JSI Alaall oda Sy Jlaadl 1agr adali)) (s2es 4njlas sl Jlaall Jab mlhoad) Ll sae Guiy
Ayl o3 by giall Vel pren e s elaiae

o S sl 53 Jlaall iyl ellaaal) (aais sliaas JS) Al V) Al o & e
G Aapaied) Clalhiad) aead Gleall 038 <3y S5 siall o JB gl dslae (i) @l Cilallaad) Jlaa)
Sl Glhals (A eVl 4l e Calist Jlae JS Glalbiadl e 4l e Jsanll 5 3 13K, 5Kl
. (Domain term matrix)cylaall Cilallaias 48 56aa sda Ail68l 4o sana

S latid) sy Chial dlee 3 Adsteadll oda aladiul & zdsall 13 Aol sae LoaYs
Bhghas o Adiny Cliae pras @ 35 s 5aine ClS Leilae (U alad) g LeVlae daaiy (sl
& Blies il culy Caiadl 13 (Confusion matrix) (i sdill 48 siae & hadiul 2 dy Jlaall lallaias
cialy dig . AY) lpany 8 las sams Vbl Qe 8 %) 0 aly A A s Cuay VL e
Y 40 1KY Ha dus

www.manaraa.com

Table of Contents

D =T [o LA o] [OOSR I
ACKNOWIEAGEMENT ...t e e e a e e s e e aeeneenreas ii
N 0L = Tod USSP ii
N OSSPSR PP SUPRUPROT iv
TaDIE OF CONENTS.....eiiiiiiiee ettt ne e reesteenee e %
LISt OF TADIES ... bbbttt vii
LISE OF FIQUIES ...ttt bbb viii
LiSt OF ADDIEVIALIONScveiiieiiiiiieie bbb IX
Transliteration of the Arabic terms within this thesiS..........c.ccooviviiiniii i X
Chapter L: INtrOQUCTIONeciiieeee et sre et e s te e e sneeneas 1
1.1 Problem StatEMENTccoiieiieie et 2
N O] 1< ox (A SRS 2
1.3 Importance of the reSEArCh ... 3
1.4 Scope and limitations of the reSearchcccccove i 3
1.5 MethOAOIOQY......ccuiiuiiiiiiieiieee e 3
1.6 TRESIS SITUCTUIE ..ottt ettt be e 4
Chapter 2: Background and related WOIK ..o 5
0 A = - Tod (o | (o TU o SRS 5
2.1.1 Term definitioNScceeieiie e 5

2.1.2 Term CharaCteriStiCS.cuvviiiiiieisieeeie e 5

2.1.3 Term EXIraCIONcoiuieiiiie ittt 7

2.2 AraDIC IaNQUAGEccveeie ettt 12
2.3 REIAIEA WOIKottt ettt ennee e 13
Chapter 3: Designing the Model of Term EXtractionc.ccccoocvvvieiieeiiiiic i 19
Y.V The primitive MOGET ..o s 19
3.2 Corpus SEIECLION SLAGEeevveerreirieiie ettt 20
3.3 Preprocessing, term extraction, and iteration counting Stagec.ceererennne 21
3.3.1 PrePrOCESSING.....ceitieiiiieite ettt ste st e ste et et et ste e ra e re e e nas 22

3.3.2 Candidate term exXtraCtion..........cccocevvererieenieere s 25

3.3.3 [teration COUNTING.......cccveiiiiiece e 26

3.4 Term candidate ranking STAgE.........cccuruririirierieie e 30
34.1 How the ranking process WOrKcccccvevveveiieie e 34

3.5 Term DistriDUION STAJEcoveiveriiriiiieieeiee e 39
Chapter 4: Realization of the MOdel...........ccoviiii i 42
4.1 COMPONENT AIAGIAM .oveiiiiiiiieie ettt bbb 42
A O I o [T To | - 0 S SSPR TR 43
N N o0 L3N U YT OSSPSR 46
4.4 Problems appeared during the implementation of the model 47
4.5 Solutions for the implementation problems............ccocoiiiiiiiiiiiiec e 47
Chapter 5: Experiments and RESUILS.........c.ccciiiiiiiie i 48
51 Evaluation Methodsccviiiiiiece e 48
5.2 Experimental deSignooiiiiiii e 50

v

www.manaraa.com

5.2.1 L4100 o - SRR TRORRRRURRRR 50

5.3 THE CIASSITIEN ... e e 52
54 RESUILS N ISCUSSIONcviiiiiieiiiiesie sttt bbb 52
Chapter 6: Conclusion and FUtUIe WOTK ... 58
RETEIEINCES ...ttt b e bbbttt et bbb nre s 60
AAPPEINTICES. ...ttt bbbt bbbkt n bbb 65
A. Flowchart for the model main Class.........ccocuvvieiininnin e 66

B. Flowchart for domain Separationcccceoereieneninininieeeese e 67

C. Flowchart for result merging for a domain...........cccccoevviieiiene s 68

D. Flowchart for binary search With iNSert...........ccccoveiiiiieiene s 69

E. APl documentation of the MOodule.........cccoiiiiiiiiii i 70

1. Class ModifiedLightStEMmMEr..........ccoviiiiiiiiic e 71

ii. Class StartTermCandidateEXtractionProCeSSccvvrveierienenenesesnnnens 73

1. Class StartRaNKINGPIOCESScocoiiiiiiiiciee e 76

IV. Class TErMSRANKETciiiiiiiiieie st 78

V. Class TermDiStripUtIONPIOCESSccoueieiiirierieiienie e 85

Vi, Class TeSHINGSIAGE......ueiveeiiiieieeieeie e ettt re e 88

Vii. Class ClasSifyDOCUMENL............ccoiiiiieiiieie e 89

F. An Example of ranking the term o« s 91

G. An Example of ranking the term dses 48 & agul 2 ke 92

Vi

www.manaraa.com

List of Tables

Table 2.1: Term based NLP dOMaINS.ccccoiiiiiiniiieiesie e 7
Table 2.2: Metric Summary and ADDIeVIAtIONS...........ccocveiiiieiiie e 10
Table 2.3: Patterns and Part Of Speech mapping.cccoovviiiiiiiiiieee e 14
Table 2.4: The number of candidate pairs in collocations.ccoceoeeienencienee 17
Table 3.1: Results of PreproCessing STEPeivrviieiieiierierie s 24
Table 3.2: Term Extraction with 1 to 4 words l1ength............cccccv i 27
Table 3.3: The iteration matrix for economy domaincccceevevieiienieiesieese e 31
Table 3.4: Term ranking matrix for one domainccccevieeiiiiie i 39
Table 3.5: Comparing rank results of candidate terms from the sample over the domains. 40
Table 3.6: Sample of DOMAIN terM MALIIXc.ooviiiieieeee e 41
Table 5.1: OSAC COrpUS WED SITE SOUITES.......ccuiriiriieiieieieie sttt 51
Table 5.2: The number of documents to be classified for the domains...........ccccccevervnnene. 51
Table 5.3: CONTUSION MALFIXeiviiiiiieiieiie e eeenee e 48
Table 5.4: Number of term candidate for the domains...........ccocvviininiereies e 52
Table 5.5: Number of distributed terms over the domainsccccevvvvrenene e 53
Table 5.6: The classifier confusion matrix for the domainsccocevvrerenn i, 55
Table 5.7:Confution matrix for ECONOMIC dOMAIN..........cocviiiiiiiiiiiieee e 56
Table 5.8: Confution matrix for Sprot domainccccceeveiieii i 56
Table 5.9: Confution matrix for AStronomy domMaiNccceveririninieieee e 57
vii

www.manaraa.com

List of Figures

Figure 2.1: The four modules of term extraction ProCess.........ccccvevevvereeresieesieere e e 9
Figure 2.2: Metric Hierarchical Orderingcocoovoieeieieneiseseeeee s 11
Figure 2.3: Local grammar rule for reporting Verbs ... 14
Figure 2.4: Graphical model of bigram syntactic patternccoccoovveveienencncnineeee 15
Figure 2.5: System outline of the FA Terms selection methodologycccccoveviniiinnne. 16
Figure 3.1: General model arChiteCLUIEccoveieeiiiiieseee e 19
Figure 3.2: Preprocessing, term Extraction, Iteration counting Process..........ccceevevvevueenee. 22
Figure 3.3: The overall diagram of the preprocessing phase...........ccccevvveviveveiieesiecie e 23
Figure 3.4: Term candidate extraction and iteration counting............ccccevevvevesieesecree s 30
Figure 3.5: The flow chart of the ranking ProCess ..o 38
Figure 4.1: The model component diagram...........ccooveieieienenesere s 42
Figure 4.2: The candidate term extraction class diagramc.ccocvvvrieienenenienesesenes 43
Figure 4.3: The term ranking Class diagramoceeiieiininenere s 44
Figure 4.4: The term distribution class diagramcccccveviiieiieie e 45
Figure 4.5: The classifier class diagramccccociveriiieieeic e e 46
Figure 5.1: Comparing candidate terms with distributed terms for one word length........... 53
Figure 5.2: Comparing candidate terms with distributed terms for four word length.......... 54
Figure 5.3: Term candidate and domain terms over term size for economy domain 54
viii

www.manaraa.com

file:///E:/Dropbox/My%20Thesis/My%20thesis%20Automatic%20Domain%20Relevant%20Term%20Extraction18-9-2012%20modified%20.docx%23_Toc336025196
file:///E:/Dropbox/My%20Thesis/My%20thesis%20Automatic%20Domain%20Relevant%20Term%20Extraction18-9-2012%20modified%20.docx%23_Toc336025197
file:///E:/Dropbox/My%20Thesis/My%20thesis%20Automatic%20Domain%20Relevant%20Term%20Extraction18-9-2012%20modified%20.docx%23_Toc336025199

ACC
ACDW
ANLP
ATE
BMA
DP
DT
DW
FA
IDF
LLR
MF
MWE
NGD
NLP
OSAC

PMI
POS
POST

TF
TF-IDF
TH

List of Abbreviations

: Adjusted Contextual Contribution.

: Average Contextual Discriminative Weight.
- Arabic Natural Language Processing.

: Automatic Term Extraction.

: BuckWalter Morphological Analyzer.

: Domain Prevalence.

: Domain Tendency.

: Discriminative Weight.

: Field Association.

. Inverse Document Frequency.

: Log-Likelihood Ratio.

: Modifier Factor.

: Multi Word Expression.

: Normalized Google Distance.

: Natural Language Processing.

: Open Source Arabic Corpora.

: Precision.

: Point wise Mutual Information.

. Part of speech.

: Part of Speech Tagging.

: Recall.

: Term Frequency.

: Term Frequency Inverse Document Frequency.
: Termhood.

www.manaraa.com

Transliteration of the Arabic terms within this thesis

Arabic English phoneme Meaning
s ktba wrote
ils katib Writer
s ktab Book

ba khat Line
W anabayb Pipes

e ghaz Gas

o ymr Passes
e abar Across
LS 5 torkya Turkey
el eela To

SEN athad Union
=503 awrwbai European
S2X) wmn Itis

e muntader Expected
o an That
JaiS yktml Completed
g 55 mshrwa Project
Sl nabawkw Nabucco
Al baalgh about
sk toloh Length
[BEPLES kylwmtra Km

< fia In

ale am Year
dalsy batklfh Cost

Prce tadr Estimated
<l ke mlyarat Billion
EBE ywrw Euro

z ok yatrah Raises
N ashm Stocks
A8, shrkh Company
dsede mdmjh Merged

www.manaraa.com

Chapter 1: Introduction

This chapter talks about automatic Arabic domain relevant term extraction from text
corpus which is very important for natural language processing studies and applications.
Firstly, we define the problem of the study and the main objective to solve this problem;
and to recognize the specific objectives related to this main objective. Secondly we
mention the scope and limitation of doing this research. Thirdly, the proposed
methodology to achieve our objectives is clarified. Finally, we summarized the content of
this research in the final paragraph.

The term is albeit provisionally definition by Sager as a constructs of human
cognition processes which assist in the classification of objects by way of systematic or
arbitrary abstraction [1]. He acknowledges that there exists considerable divergence of
opinion in this matter and chooses to leave it more or less undefined and considered as an
“axiomatic primitive, like word or sentence” [1].

Term extraction is a method that scans text to extract terminological units. It contains
in order to enrich lexicographic resources. Software solutions can automate the process by
scanning texts for terminological units, extracting word combinations to fulfill preset
criteria and generating reports for filtering are extremely helpful because they automated a
task that can otherwise be a time consuming, and costly undertaking [2].

The resulting terms maybe used in many NLP tasks such as information retrieval, text
mining, document summarization etc... [3]. Any corpus participate in the term extraction
process need to be preprocessed like removing no letters, removing stop word, etc... [4].
The term extraction has two main stages: Firstly, extraction of candidate terms. Secondly,
validating and ranking of these terms [5].

There are several approaches for extracting candidate terms like linguistic filtering
that uses linguistic patterns like (N ADJ, N N, and N PREP N) for filtering the tagged
corpus [6]. Also the noun phrase which take any sequence of words following a noun can
be used [5]. Other researchers uses a local grammar approach that uses a role for
extracting a term like the telling role in [7]. The n-gram sliding window method could be
used for extracting candidate term with n words length [8][9].

There are several ranking ways for validating the extracted term. They are classified
into two categories unithood and termhood [10]. First, the unithood is the degree of
strength or stability of syntagmatic combinations and collocations [11]. It is calculated
only for complex terms. Some of the unithood measures are T-Score, NGD (Normalized
Google Distance), mutual information, and log-likelihood. They simply relies on the

www.manaraa.com

occurrence and co-occurrence frequencies from domain corpora as the source of evidence
[12]. Second, the termhood measures the degree to which these stable lexical units are
related to domain-specific concepts like C-value, NC-value, TF/IDF, etc... [13]. Some
ranking methods use both of them like Termhood (TH).

This study aims to build a model for automatic Arabic domain-relevant term
extraction from multiple domains corpus. The model depends on the prevalence and
tendency measures for ranking the extracted candidate term on the target domain and
across the rest of the corpus. We expect to have pure domain-relevant terms matrix as an
output of the model. This matrix could be helpful in classifying document, automatic
library indexing, and other lingual application. Depending on the type of the corpus this
model could be used in generating spam mail matrix for spam mail detection.

1.1 Problem statement

The Existing Arabic domain-relevant term extraction methods and models
depend on a single domain to measure the term relevancy for specific domain.
Therefore Arabic Domain-relevant Term Ranking needs to be enhanced depending on
prevalence and tendency of the selected domain-relevant terms within the domain and
across the irrelevant corpus. Consequently the problem in this research is how to
extract domain relevant terms from Arabic text corpus to construct a domain relevant
term matrix.

1.2 Objectives

Main objective

The vital purpose of this study is to develop a model for automatic Arabic
domain-relevant term extraction from text corpus using several domains. The
model would use linguistic methods for the term extraction, prevalence and
tendency statistical technique to rank the selected terms within the domain and
across the irrelevant domains. Hence forth to distribute these terms over the
domains depending on their rank value to construct a domain term matrix.

Specific objectives

- To select a corpus from several domain specific corpuses, preprocess it, and
construct a word vector containing tokens extracted from this corpus.

- To extract candidate terms the word vector using sliding window.

- To rank the extracted terms depending on distributional behavior (prevalence
and tendency) for each term within the domain and across other domains using
the Termhood method.

- To assign the extracted terms to the strongest domain and remove it from the
other domains.

www.manaraa.com

- To realize the model through a term extraction system and evaluate its accuracy
using the precision and recall measures.

1.3 Importance of the research

To our knowledge, there exists no similar research in Arabic term extraction that
combines both the linguistic as well as the statistical techniques to extract terms.

This research will assist other natural language possessing applications such as
automatic translation, question answering, document classification, ontology
building, etc... By introducing a domain term matrix; and a method for domain
relevant term extraction.

The research will help to improve the precision and recall for domain-relevant
term extraction which affects the automatic ontology learning process for Arabic
language.

Arabic natural language text processing domain will benefit from this model to
support Arabic knowledge management.

Extracting knowledge from text is a very challenging problem and we hope this
work will help to enhance this process.

1.4 Scope and limitations of the research

Within term extraction, the research focuses on automatic term extraction with
emphasize on natural language processing such as: Part-of-speech tagging and phrase
chunking. We deal with Arabic language; therefore we use Arabic natural language
processing to deal with Arabic corpuses.

The Arabic text corpus will be divided into certain specific domains as we are
going to measure the term relevancy depending on the prevalence and tendency of the
term across the domain and the rest of the corpus.

Prevalence and tendency as statistical techniques for term ranking will be used
here as they are widely used and proven to be efficient especially for domain-relevant
term extraction.

1.5 Methodology

We present the following methodology for carrying out the objectives of the
research:

1. Build a model for automatic Arabic domain-relevant term extraction.
2. Select several domain specific corpuses.

www.manaraa.com

http://en.wikipedia.org/wiki/Part_of_speech_tagging
http://en.wikipedia.org/wiki/Phrase_chunking
http://en.wikipedia.org/wiki/Phrase_chunking

w

Perform the suitable preprocessing like removing punctuations, Arabic

diacritics, non-letters, definite articles, and stop words.

Construct a domain word vectors from the corpus

Combine the domain word vectors into one vector.

Extract terms from word vector using sliding window.

Calculate the occurrences of each term within the word vectors of the corpus

and number of documents the term appears in.

8. Ranking terms depending on distributional behaviors (prevalence and tendency)
of term within the target domain and also across different domains.

9. After constructing the term ranking vectors for all domains within the corpus,
find intersected terms and put them in the strongest domain and remove it from
other domains constructing the domain term matrix.

10. Evaluation of the accuracy and comparison of results:

a. Evaluate the results of the examples that use the model output.

b. Comparing the model with other models based on selected criteria.

N o ook

1.6 Thesis structure

The rest of the thesis is organized as follows: Chapter 2 discusses the background
of the study and the related works that have studied term extraction issues. Chapter 3
presents the detailed development of the model. Chapter 4 describes the stages of
implementing the model. Chapter 5 evaluates the model depending on the
implementation examples in classifying documents. Chapter 6 concludes the study
and suggested future work that would be done to promote and develop the model.

www.manaraa.com

Chapter 2: Background and related work

In this chapter we present the background of term extraction by defining the word
term and talk about the characteristics and properties of terms. Also we define term
extraction and talk about the special characteristics of Arabic language. After that we
review the related work in term extraction domain and discuss methods, results, and
methodologies that are applied to evaluate the necessity of our work.

2.1 Background

2.1.1 Term definitions

There are different definitions of the word term. One such a linguistic definition
Is; “Term is a noun or a compound word used in a specific context to give a dedicated
meaning” [14]. But here we should define the term depending on the purposes of the
corpus-based computational terminology extraction process which may serve like
document classification, construction of ontology’s, document indices, validation of
translation memories, and even classical terminology works.

Thus, the definition of term must clarify the purpose it serves. What is common
to the different applications however is the need to distinguish domain-specific terms
from general vocabulary [15]. Domain-specific terms are terms that have significant
meaning(s) in a specific domain [16].

Terms are habitual recurrent word combinations of everyday language [17].
Terms is albeit provisional defined as “...constructs of human cognition processes
which assist in the classification of objects by way of systematic or arbitrary
abstraction”. He acknowledges that there exists considerable divergence of opinion in
this matter and chooses to leave it more or less undefined and considered as an
“axiomatic primitive, like word or sentence” [1]. In our work we define term as a
sequence of word or verbs that do not contain a stop word.

2.1.2 Term characteristics

There are several characteristics for Term that should be available in terms to
apply a term extraction algorithm. Those characteristics are included into two
categories, Unithood characteristics which deals with terms as linguistic unit of some
sort that enters into syntactic relations with other units, and Termhood characteristics
which measures the degree to which a linguistic unit is related to domain-specific
context [18][19]. Term characteristics are:

www.manaraa.com

= Linguistic properties of terms

Some Terms are defined using a linguistic patterns that could only be
applied to a corpus that has been tagged using a part-of-speech tagger in pre-
processing phase [20][21].

((Adj|Noun) + | ((Adj|Noun) = NounPrep)?) (2.1)

Equation (2.1) is an example for a linguistic pattern where the pattern
contains an adjective or noun which could be followed be any sequence of noun
preposition sequence. Therefore it could be applied on a tagged text to extract
candidate terms.

= Statistical properties of terms

The frequency of Term is the basic statistical property for Term in a corpus
and generally they called Unithood of Term. The basic frequency counts are
combined to compute co-occurrence measures for words. Common co-
occurrence measures are the Dice similarity coefficient [22] which means the
greater the frequency of term AB the bigger dice value will be. Point-wise
Mutual Information (PMI) and Log-Likelihood Ratio (LLR), as they listed below
in [23] and [24]. As result all these masseurs approve the relation between
compound term and its components:

. 2Xfug
Dice = Ftf (2.2)
PMI =logf,; — (logf, +1logf3) (2.3)
LLR =logL(fss.fa fg/N) +logL(fg — fag. N — fu. [5/N) — logL(fug . fa fa/fs) (2.4)

—logL(fg — fag N — fa. (fs — fag)IN — f4)

Equations (2.2, 2.3, and 2.4) are Examples of statistical proprieties of terms where f

represents the frequencies of A, B terms and AB as a compound term of A and B. N is
the text. L is the likelihood of choices between brackets like (faiz. fa- f5).

Other statistical measures for overlapped terms are [25] :
e The frequency of a term candidate as a substring of another candidate.
e The frequency of a term candidate as a modifier substring or a head.
e The number of longer candidate terms of which a candidate is a part.
e The length of term |a| is the number of words in the term.

= Distributional properties of terms
There are several distributional properties of terms. First, their distribution
within documents. Second, their distribution across documents in a corpus.

www.manaraa.com

Third, their distribution in a domain-specific corpus as compared to their
distribution in a contrastive corpus. Samples of these properties are [15]:

o tf-idf where tf stands for term frequency (in a given document) and idf
stands for inverse document frequency measuring the spread of a term
through the entire document collection.

idf =log (nﬂz) (2.5)

In equation (2.5) N is the number of documents for the corpus.
And n,; the number of the document the term appears in.

The tf-idf is primarily used to rank documents, but it can also be
used to rank words and word sequences of a document as term
candidates.

e A simple metric that directly compares the distribution of a term in a
domain specific corpus with its distribution in a general corpus is
weirdness.

o XNG) 2.6)

fe X Np

In equation (2.6) D is for the domain-specific corpus, G is for the
general corpus, N is for corpus size, and f is for absolute frequency
of terms over the domain corpus or the general corpus.

Weirdness = (

2.1.3 Term Extraction

Term extraction (which also called terminology mining, term recognition, or
glossary extraction) is a subtask of information retrieval that extracts relevant terms
from a given corpus using statistical like prevalence and tendency and natural
language processing (NLP) methods [26][27].

As stated in Table 2.1, term-based NLP is partitioned into four sub-domains of
research [14].

Table 2.1: Term based NLP domains.

Prior terminological data No prior terminological data
Term discovery Term enrichment Term acquisition
Term recognition | Controlled indexing Free indexing
7

www.manaraa.com

Based on this division, this thesis is concerned with term acquisition (Extraction).
We should distinguish them from term checking and term spotting, which use a
validated terms to search for in a set of documents.

Term extraction consists of both mono-lingual and multi-lingual term extraction,
and single-word as well as multi-word terms. It is a major component in many
language processing models and applications.

There are four approaches for term extraction: (a) Statistical methods which use
association measures to rank MWE (Multi Word Expression) candidates. (b)
Symbolic method which use morpho-syntactic patterns. (c) Hybrid methods which
use both statistical measures and linguistic filters. And (d) Word alignment [28].

= Domain relevant term extraction

An issue of term extraction is domain relevant term extraction which is
concerned with extracting the terms relevant to specific domain. Determining the
domain of terms helps to increase the performance of the classifiers that in turn
increase the efficiency of knowledge retrieval. Many automatic term extraction
(ATE) methods used with domain-specific document were discussed, such as
TERMHOOD, UNITHOOD, C-VALUE, NC-VALUE etc... These methods are
used with machine translation, summarization, question answering, and many
important applications. These methods help in increasing the efficiency and
accuracy of these systems.

An overview of the general model for term extraction process is given in
Figure 2.1 [26].The first, process in this figure is preprocessing and the second is
term extraction and ranking the extracted terms. Then, presentation and sorting
the terms. Finally, validate of terms [4]. In each stage there are several tools and
approaches which could be used.

www.manaraa.com

documents

|

pre-processing

terms

| T

extraction, |— | presentation, | — | validation
ranking sorting

Figure 2.1: The four modules of term extraction process [26].

= Pre-processing

In general term extraction model preprocessing step consist sub tasks:
removing no letters, syntactic tagger tagged every input sentence from input
document, and produces a list of syntactic information (Noun Phrase-NP).
Removing stop words from each of the list of NP. Finally, the list of NP should
be stemmed to produce list of clean NP, as the term candidate [4].

= Candidate term extraction

Detecting of term candidates is generally depends on morpho-syntactic
criterion [29]. Generally, linguistic-oriented techniques rely on linguistic
theories, morphological and syntactical dependency information obtained from
natural language processing. Together with templates and patterns in the form of
regular expressions, these techniques attempt to extract and identify term
candidates. There are two common approaches for extracting term candidates.
The first, requires the corpus to be tagged or parsed, and a filter is then employed
to extract words or phrases satisfying some linguistic patterns. There are two
types of filters for extracting from tagged corpus, namely, open or closed. Closed
filters, which rely on a small set of allowable part-of-speech, will produce high
precision but poor recall; On the other hand, open filters allow part-of-speech
such as prepositions and adjectives will have the opposite effect. Most of the
existing approaches rely on regular expressions and part-of-speech tags to accept
or reject sequences of n-grams as term candidates. The second, type of extraction
approach works on raw corpus using a set of heuristics. This type of approach,
does not rely on part-of-speech tags, is quite rare. Such approach has to make use
of the textual surface constraints to approximate the boundaries of term
candidates. One of the constraints includes the use of a stop word list to obtain
the boundaries of stop words for inferring the boundaries of candidates. A
selection list of allowable prepositions can also be employed to enforce
constraints on the tokens between units [30].

www.manaraa.com

Most of these criterion are made for English language and could be applied
to Arabic language but the precision of Arabic taggers are very low [31]. So |
used a sliding window with length from 1 to 4 for candidate term extraction [32].

» Ranking candidate terms

There are several ranking methods these measures divided into two
categories unithood and termhood. Unithood is defined as “the degree of strength
or stability of syntagmatic combinations and collocations” [11]. and calculated
only for complex terms like T-Score, NGD (Normalized Google Distance) ,
mutual information and log-likelihood, and rely simply on the occurrence and co-
occurrence frequencies from domain corpora as the source of evidence [12]. On
the other hand termhood measures the degree to which these stable lexical units
are related to domain-specific concepts like C-value, NC-value, TF/IDF, etc.
[13]. Some ranking methods use both of them like Termhood (TH).

= Term ranking metrics

There are several metrics for evaluating term extraction methods. Metric
summaries and abbreviations are listed in Table 2.2. They are based on [33] and
construct the metric tree in Figure 2.2. These metrics evaluates the extracted
terms according to the domain or corpus and do not evaluate the terms according
to the distributional behavior over the domain and across the rest of the corpus in
a separated domain corpus.

Table 2.2: Metric Summary and Abbreviations [33]

Abbreviation | Metric Rational
Rewards high term count, large
TF Corpus Term Frequency document have advantage.
Minimize the effect of highly
LTF tﬁ)eggueéjngorpus Term frequent terms, similar to
g y normalization.
USN Document Term Frequency Reward word that appears lots In one
document.
ED Evenly Distributed All documents contribute same
number of terms.
BD Favor Big Documents Reward for large document.
NTE Normalized Term Frequency Rewards high term count but negates
large document skewing.
DR Document Relativized Less r_eward for large documents
penalizes verbose documents.
CR Corpus Relativized Less reward for large documents.
Document Relativized-
DRDA Document Average Less reward for large documents.
Freguency
Corpus Relativized-
CRDA Document Average Less reward for large documents.
Frequency

10

www.manaraa.com

Term Ereauency and Inverse Reward terms that are in few
TFIDF g y documents, but that appear
Document Frequency
frequently.
Flattens distribution of document
Term Frequency and logged . .
LTFIDF frequency, making outlier less
Inverse Document Frequency
powerful.
DC Distribution Consensus Reward terms that_ occur in the same
frequency in multiple documents.
BC Binary Consensus Reward Consensus, reward minimum
frequency of one.

A few multi domain metrics found in the literature one of them is a
Termhood (TH) that measures distributional behaviors within the target domain
and also across different domains as statistical evidence to quantify the linguistic

evidences in the form of candidate,

membership to a domain [10].

modifier, and context for the term

Metrics
Frequency
Distribution
Term based
Frequency
Standard Binary
Static Deviation Distribution
Document Based
Allotments
Document qut,-l-all.
Size Based pjlotments Normalization
Allotments o~
c g M b ; Document
) orpus Max ocumen
Length
Inverse Corpus Document Max
Document TE TE
Frequency
| CC_"'F’US Max Document
Logged Logged minus Max minus
Inverse Document Average TF Average TF
Document TF
Frequency

Figure 2.2: Metric Hierarchical Ordering [33]

Although there are a lot of advantages for ATE such as machine translation
which helps the Arabic reader to benefit from the English content on the web,
there are few works for Arabic language and there is a need to increase this work
to support the Arabic users and the Arabic content in the Internet.

11

www.manaraa.com

2.2 Arabic language

= Importance of Arabic language

Arabic language is the first language for majority of the Arabic countries
and the second language for Islamic countries. The language distinct them from
countries in other regions, and it is also a language manifest in their faith, and is
the religious language of all Muslims of various ethnicities around the world. It is
a Semitic language with 28 alphabet letters. Its writing orientation is from right-
to-left. Arabic is also considered one of the six official languages of the United
Nations and the mother tongue of more than 330 million people. The Arabic
Quran which means 'the recital’ or the proclamation was revealed to Muhammad,
the Prophet of Islam making the use of Arabic wider among the Muslims, those
who profess Islam [34].

= Difficulties of Arabic language

A lot of difficulties and special issues face the automation of domain-
relevant term extraction from Arabic corpuses; for instance, at the level of
language processing there are issues that need to be addressed such as: short
vowels, absence of capital letters, affixations (for example infixes, suffixes,
prefixes, etc...). The Arabic has two genders, feminine and masculine, three
cardinality, singular, dual, and plural. At the level of Part of Speech Tagging
(POST) there are issues that need to be addressed such as complex morphology
related to nouns, verbs and particles. Arabic is also highly inflectional and
derivational, which makes morphological analysis a very complex task. Also
Arabic has three grammatical cases, nominative, genitive, and accusative. Arabic
noun is determined by its gender, cardinality, and grammatical case [34][35][36].

Arabic is a challenging language for a number of reasons [37]:

e Orthographic (s2wY)) with diacritics is less ambiguous and more
phonetic in Arabic, certain combinations of characters can be
written in different ways.

e Arabic language has short and long vowels which give different
pronunciation. Grammatically they are required but omitted in
written Arabic texts.

e Arabic has a very complex morphology as compare to English
language.

e Synonyms are widespread. Arabic is a highly inflectional and
derivational language.

e Lack of publically freely accessible Arabic Corpora.

e Lack of Arabic digital contents.

12

www.manaraa.com

= Issues to be solved in this thesis related to Arabic language
Removing the definite article (J! J1 31 Jé s Ju Jiy J) from the word.

Removing the diacritics (- & & o774,
Removing stop words.

Remove punctuations.

2.3 Related Work

A lot of work in the field of domain-relevant term extraction is done in non-
Arabic languages. For example EXATOLLP [38] is a software that extracts domain-
relevant terms of syntactic annotated corpus which is a software tool that uses both
linguistic and statistical approaches to extract and select significant terms from a
domain represented by the annotated corpus. The system starts by extracting the noun
phrases form xml documents and count the iteration of each phrase and save a list of
them [38].

Also a high-performing technique for automatic extraction of shared terminology
from available documents in a given domain is designed in [39] named as
TermExtractor. It identifies relevant terms based on two steps: First, a linguistic
processor is used to parse text and extract typical terminological structures, like
compounds, adjective-noun and noun preposition noun sequences. Then, the list of
terminological candidates is purged according to, domain pertinence, domain
consensus, lexical cohesion, structural relevance, and miscellaneous filters to give a
list of terms.

The aim of this study is to construct a model for automatic Arabic domain-
relevant term extraction from corpus. For the Arabic language several works is
available for term extraction, but little work is done in the domain-relevant term
extraction. A few approaches for single domain as well as for multiple domains
automatic term extraction is done. These works mostly use what is called Field
Association (FA) to classify terms related to a specific domain [40]. The pre-
processing step is very important in the Arabic language; because it is highly
inflectional. Moreover special stemmer is designed depending on the topic of the
research and the methods that are used. In information retrieval light stemming is
widely used to keep the information value within the terms and words [41][42][34].

In building a word vector, [43] designs and implements a system for building an
Arabic lexicon with 96% accuracy. The stemming process they use is likely more
accurate. Other light stemmer approaches like the tested in [44] have low results, and
the tool proposed by [37] could be merged with Al-Shalabis tool to enhance the

13

www.manaraa.com

preprocessing stage we will try to test several preprocessing methods to choose the
best for our work.

The local grammar approach is used in [45] for the extraction of persons names
from the Arabic financial news. It is a way of describing syntactic restrictions of
certain subsets of sentences, which are closed under some or all of the operations in
the language. They define some rules (see Figure 2.3) which are based on that the
subject argument of the class of verbs known as reporting verbs (RVs) it must refer to
a person [46][47]. This approach is not efficient for the term extraction as there are no
rules for all the terms in the Arabic language. But it could be used as a part of the
system for the future developers.

On the other hand, [48] for extract multi-word terms they use the N ADJ, N1 N2
and N1 PREP N2 patterns; and the ranks of the extracted term-like units according to
their domain representatives.

A multi-word term extraction program for Arabic language is designed in [48].
They take into consideration the linguistic specifications of Arabic word like,
graphical, Inflectional, morpho-syntactic and syntactic variants. They rank the multi
word term like (MWT-like) units by means of statistical techniques, log-likelihood
ratio (LLR), FLR, Mutual Information (MI3) and t-scores.

Js
s,
=l
.).L:J_,
0 \« C_;;,) _<}_
Ol 5‘;
<as
dsss
ds
s,

Figure 2.3: Local grammar rule for reporting verbs [45]

So in the term candidate extraction process they select patterns in Table 2.3 and
we think this selection limits the probability of covering all the term forms in the
corpus although this reduces the computational time. They work with one domain
corpus and use a single domain ranking methods which could affect the prevalence
and tendency of the extracted terms to the domain [49].

Table 2.3: Patterns and Part Of Speech mapping [48].

14

www.manaraa.com

MWT Pattern Part of speech pattern

N1 N2 NN [P]? | NNs [P]?

N1 ADJ NN [P]? | NNs [P]?] JJ

N! PREP N2 NN [P]? | NNs [P]? | IN | NN [P]? | NNs [P]?

In Table 2.3 N stands for noun, ADJ stands for adjective and PREP stands for
preposition.

Also Khalid Al Khatib and Amer Badarneh [42] propose a two steps approach
for extracting candidate MWES: First, using a POS (Part of Speech) linguistic filter to
extract candidate MWTs then using a bigram compound noun patterns(see Figure
2.4). Second, they assign each candidate MWT a score depending on the combination
of both the C-value ranking method and the log likelihood ration (LLR) ranking
method [50][51][52].

In their work they use Khoja stemmer which is a root extraction stemmer that
removes the informational value of the token or word within the text. Also, he used a

Preposition) [—__ (Definite Noun)

 p—

0

(Indefinite Noun) c————|

Figure 2.4: Graphical model of bigram syntactic pattern [42]

Rule Based Approach for Tagging Non Vocalized Arabic Words which has its own
stemmer and concentrate on specified text; beside, he works with on domain that
could affect the resulting domain terms. They also use a bi-gram term length, and one
domain ranking methods.

A new methodology in [40] is used for building extensive Arabic dictionary
using linguistic methods to extract relevant compound as well as single Field
Association (FA) Terms from domain-specific corpora using Arabic POS as shown in
Figure 2.5.

The system in Figure 2.5 consists of a part-of-speech (POS) tagger, a FA Terms
candidate extraction module, a weighting module for candidate terms, selecting the
relevant FA Terms, and appending them to the FA Terms dictionary. In their work

15

www.manaraa.com

they use a sliding window with 10 tokens, but they extract only terms matches the
selected patterns.

Furthermore they depend on the referral corpus to rank the term to a specific
domain and the results were obtained separately for the nine domains. They do not
take into their consideration the distributional behavior of the term over the other
domains. Their methodology is tested using their method on 14 domains using 251
MB of domain specific corpora from Wikipedia and Alhyah news giving recall and
precision results around 84 percent and 79 percent respectively [40].

A new waiting function is presented in [53] for increasing the first ranked field
association terms using declinable words and concurrent words which relate to
narrow association categories and eliminate FA word ambiguity by weighting
according to the degree of importance of concurrent words.

Wikipedia Arabic Articles ’ Reference Corpus
Dumps (Al-Havaat news)

Arabic POS Tagging Arabic PO‘i Tagging ‘
L

‘AT candi *ex i Ref. FAT didat
FAT candidates e_\trnctmn/k‘ Stop words L '“J /L e candidates
extraction

FAT candidates
weighting and FATs
selection
< -

Selected Relevant
FATs

i Updating FAT level with FAW !
' in Dictionary

Figure 2.5: System outline of the FA Terms selection methodology [40]

Three proposed complementary approaches to extract MWEs in [28] is
implemented:
a)A cross lingual correspondence asymmetries which relied on the
correspondence asymmetries between Arabic Wikipedia titles and titles in
21 different languages.
b) Translation-based extraction which collects English MWESs from Princeton
Word Net 3.0, translates the collection into Arabic using Google
Translate, and utilizes different search engines to validate the output.

16

www.manaraa.com

c) Lexical association measures to extract MWEs from a large unannotated
corpus.

They mention that the identification of MWEs is too complex to be dealt with by
one simple solution; but also here the researchers concentrate on general term
extraction and not the domain of the terms. Using the heeders of wiki articles limits
the number of terms that could be extracted to evaluate; and the direct translation
from other language is not suitable for the Arabic language as it is highly inflectional
and has a lot of synonyms.

A model for automatic Collocation Extraction is proposed by [6]. Collocation is
“A word combination whose semantic and/or syntactic properties cannot be fully
predicted from those of its components and which therefore has to be listed in a
lexicon”. They use the following structural patterns of Arabic collocation (N+N,
N+ADJ, V+N, V+ADV, ADJ+ADV, ADL+N), then, they used the joint tagging and
segmenting algorithm that used for Arabic tagging by [31] and produced a bigram
collocation depending on POS and previous patterns. Then, they selected four
association measures (LLR, X2 Mutual Information (MI), Enhanced Mutual
Information (EMI)), and they found that the log-likelihood ratio clearly outperforms
the other association measures. In their work they are also strict themselves with the
patterns that limits the number of collocation that could be extracted. They eliminate
the terms with low frequencies (see Table 2.4) which could be more representative
for specific domain than others; and they work on general corpus with no domains
that ignore the distributional behavior of the term over the domain and across the
other domains.

Table 2.4: The number of candidate pairs in collocations [6].

Patterns Freg>10 | Freq<10
Noun + Noun 1284 53726
Noun + Adjective 1651 31888
Noun + Verb 286 8521
Verb + Adverb 251 6523
Adjective + 365 7852
Adverb
Adjective + Noun 985 9564
Collocation 5092 150534

A new weighting method for terms is proposed by [13] for multi domain corpus
that employs distributional behaviors of term candidates within the target domain;
and also across different domains as statistical evidence their method consists of a

17

www.manaraa.com

series of base and derived measures for recognizing terms. The base measures,
namely, domain prevalence (DP) and domain tendency (DT) capture the statistical
evidence that appear in the form of intra-domain and cross-domain term distributional
behavior. Using these base measures, four additional measures, namely
discriminative weight (DW), modifier factor (MF), average contextual discriminative
weight (ACDW), and adjusted contextual contribution (ACC) were derived to
quantify linguistic evidences in the form of candidates, modifiers and context words.
Together, these base and derived measures contribute to the computation of a final
weight known as Termhood (TH) that is used for the ranking of candidates and
selection of terms.

The mechanism for scoring and ranking candidate terms by employing
distributional behaviors within the target domain and also across different domains as
statistical evidence to quantify the linguistic evidences in the form of candidate,
modifier and context is applied on English documents only [13].

Most of the works reviewed above are dealing with one domain. This could give
a false indicator of the relation between the term and the domain. On the other hand,
the number of domains in the corpus increases the representatives of the extracted
terms for the domains. The number of the domains increases the probability of the
term to appear in several domains and competition of the domains for the term
increases. Moreover these works depend on dedicated patterns for extracting
candidate terms. This could exclude a large number of terms that might have a
significant relation to the domain. They use ranking methods that quantify the term
depending on one domain. These approaches for term candidate ranking might be
inappropriate for multi domain corpus. Ranking candidate terms depends on both
domain and cross domain validates the distributional behavior effect as a linguistic
evidence for the term membership in a domain.

18

www.manaraa.com

Chapter 3: Designing the Model of Term
Extraction

In this chapter we design the model that serves our objective in this study and explain
the rationale behind our choices to develop the model. The design beginning with corpus
selection and the specification of the selected corpus, the preprocessing tasks determining
which process suitable for our model, the methods for term extraction that increase the
accuracy of our model, determining the best ranking method to evaluate the term weight,
and finally choosing the term distribution process to assign a term to a domain.

3.1 The primitive model
The overall primitive model can be summarized in the following steps:

1. Preprocessing

Term extraction

Iteration counting.

Term candidate ranking process.

Ranked term distribution over the domains process.

agkrwn

The overall model architecture is shown in Figure 3.1.

Input
' Candidate .
. Iteration
Corpus Preprocessing Term Countin
Documents ‘ Extraction | g
—.____/——
Domains J Term Candidate
Term Matrix U Distripution | Term Ranking
Output

Figure 3.1: General model architecture

19

www.manaraa.com

The Term extraction model begins by choosing the text corpus which should
contain several domains. This corpus is then tokenized. For each token we apply
preprocessing and add the resulting token to the word vector. Preprocessing step
includes removing punctuation, diacritics, non-letters and stop words. If the extracted
token is blank we add the blank to the word vector because it is important for term
extraction.

After that, we use a sliding window with lengths from one to four that slides over
the resulting word vector and add the extracted term to the term candidate vector. If
the term extracted by the sliding window contains blank we do not add it to the term
candidate vector. Simultaneously, we count the term iteration over the domain and
the number of the documents the term appears in for each domain and save the
resulting vector to files.

Next, we use the saved statistics for ranking each domain term candidate to the
domain and do this for all the domains. The ranking method measures the
distributional behavior of the candidate term over the domain and across the rest of
the corpus.

Finally, we compare the ranking value for candidate term over the entire domain
and save the term to the vector of the domain with the highest rank value. On the
whole, we present these steps in more details.

3.2 Corpus selection stage

The model should extract the domain relevant terms from Arabic corpus so it
needs to handle a corpus with the following properties:

1. A big corpus that could give a good distributional behavior for the terms.

2. The corpus should be separated into domains.

3. It should be gathered from several sources.

There are several corpora on the Internet which have been used for term
extraction and we will review them depending on the above properties:

The corpus gathered by [54] is quite big (800 Mb), contains 113 million words
and taken from newspaper sites but it is not separated into domains 1.

Tashkeela (Arabic diacritics) is an Arabic vocalized texts corpus contains 6
million words, 122 Mb compressed taken from books from Al-Shamela library. Its
size is acceptable but it is not separated into domains?.

L http://aracorpus.e3ra-b.com/argistestsrv.nmsu.edu/AraCorpus/
2 http://sourceforge.net/projects/tashkeela

20

www.manaraa.com

http://shamela.ws/
http://aracorpus.e3ra-b.com/argistestsrv.nmsu.edu/AraCorpus/
http://sourceforge.net/projects/tashkeela/

ALWatan&AlKhaleej corpus was gathered by [55] from Alwatan and Alkhalej
newspapers. It’s about 14 Mb size. It is separated into six domains. This corpus is
from one source and it could be some bias®.

Another corpus we have reviewed is the corpus gathered by [56] from Arabic
newspapers. This corpus is separated into 14 domains but comparing to its size 3.27
Mb. it’s small and we are not sure that it will clarify the real distributional behavior of
the extracted terms; but, we could use this corpus for testing and evaluation®.

Finally, we examine the OSAC (Open Source Arabic Corpora) [35] corpus
which is gathered from a specific domain sites and some newspapers, this corpus is®:
1. A big corpus (18 Mb) that could give a good distributional behavior for the
terms.
2. The corpus is separated into 10 domains.
3. ltis gathered from several sources.

The size of this corpus is sufficient to characterize its domains. On the other
hand, the number of domains in the corpus increases the representatives of the
extracted terms for the domains. That means the extracted terms will represent the
domain.in other words the number of terms appear in more than one domain will
increase and the unique terms will have more weight than others.

3.3 Preprocessing, term extraction, and iteration counting stage

The second stage in this model is preprocessing, term Extraction, and iteration
counting stage. As shown in Figure 3.2 this stage consists of three processes start
with preprocessing which uses light stemmer that removes diacritics, punctuations,
non-Arabic letters, the definite article, and stop words. The stemmed word vector
matrix then passes to the candidate term extraction process which extracts the terms
from the stemmed word vector depending on a sliding window saving them to
candidate term vector matrix. The term iteration and document iteration counting
process counts the number of times the candidate term appears in the domain, and
also counts the number of document the candidate term appears in. Next each of these
steps is described and discussed in detail.

3 http://sourceforge.net/projects/arabiccorpus/
4 http://www.comp.leeds.a-c.uk/eric/latifa/research.htm
5 http://sourceforge.net/projects/ar-text-mining/files/

21

www.manaraa.com

http://sourceforge.net/projects/arabiccorpus
http://www.comp.leeds.a-c.uk/eric/latifa/research.htm
http://sourceforge.net/projects/ar-text-mining/files/

DOIT}\alfLSeTpar«tated .*_t' Term Candidate Matrix,
input } Prepr inc
Docurr?’welr:t fgl us —pr | PLQ%' E)Csetssmg.and Term Iteration Matrix
; ¢ femmi
P | ght Stemming J Document Iteration Matrix
-
.
<O < s
o 3
{9 i
&3
=4 0
0 B
29 g
XE
n
Input / output \ I f
- Candidate Term Matrix ’)
RS Extract Candidate | Stemmed Corpus Vector Term Iteration
Terms Matrix ’ and Document
i] | Iteration Counting |

Figure 3.2: Preprocessing, term Extraction, Iteration counting Process.

3.3.1 Preprocessing

Preprocessing could be trivial process for some applications but in the Arabic
language applications it is very tricky process as the Arabic language is a highly
morphological language [43][47][52]. To increase the efficiency of this model a
special preprocessing steps have been implemented such as definite article, the
non-letter characters, diacritics and punctuation removal to increase the
frequencies of word without serious effect on the meaning of the word or the term.
For example when extract the root for the two words (<US¢ ilS) it gives the root
(<=<) although the Symantec of the two words are deferent.

The preprocessing is performed on a row data which is a list of folders and
each folder represents a domain and contains text files encoded in UTF8. The
proposed sequence of steps for the preprocessing is as follows:

1. Start with reading the folders within the corpus folder. Each folder
represent a domain.
2. For each domain we read the file list within the folder.
For each file we read the content of the file in a vector.
4. For each word in the vector we do the following :
Remove the definite article.
Remove the non-Arabic letters.
Remove the punctuation.
Remove the diacritics.
Check if the remaining word length is greater than two if yes
i. Check if the word is not a stop word write the word to domain
stemmed word vector

w

moow»

22

www.manaraa.com

ii. Else add blank to the stemmed word vector.
5. Finally, write the domain stemmed word vector to a file.

The overall diagram of the preprocessing step is shown in Figure 3.3. As we
see in the figure a folder reader reads the folder names and put them in a list of
domain names. This reader generalizes our model to work with any number of

domains.

/ Read Domains /

Is there ancther

domain
Read the files within
the domain

Is there a
another file

Store the Corpus
tokens matrix

Read the file
content

Is there another
token in the file

Stem the token
Remove diacritics
Remove definite article
Remove punctuation

Add plank to
domain vector

T

Is stemmed
token length=2

Is stemmed
tcken a stop
word

Yes

Add stemmed loken to
domain vector

Figure 3.3: The overall diagram of the preprocessing phase

Then for each domain we read the list of files within the domain and construct
a file list reader. Also this reader generalizes our model to work with any number

23

www.manharaa.com

of files within the domain and work with different number of files for each
domain.

After that we read the contents of each file within the domain files listed in a
single token vector. Add each token as an element in the vector. We use Khoja

single token file reader®.

Table 3.1: Results of preprocessing step

.. Remove
original L Remove Remove Remove non Remove
definite R .)
text article diacritics punctuation | Arabic letters | stop words
BBC BBC BBC BBC
Arabic Arabic Arabic Arabic
L_s:u_n\ A_\g__:\ L_x:u_n\ L_L\.\L!\ L_L\.\Ll\ il
e e e e e e
e &5 LS LS LS LS
]]]]]
REGY AR5 i Al alasi) alas)
2503Y) s Y TSy s s
&y O (48 ey SeS)
W] o T ™ = I
ol ol ol ol ol
£ 5 pia ¢ 9 & 9 e & 5 e & 5 pia & 5 pia
ha Li ha ha ha ha
il il il il il il
Sl Ssb Sl Sl Sl Sl
¢ [3 3
o far & & & &
AR PN A,k A,k A,k Ak
3300 3300 3300 3300 3300
| e slS e slS | e slS | e slS | e slS | e slS
¢ [3 3
& < B o <
2014 2014 2014 2014 2014
.::!’S;,: j"/SﬂS;: - .!;._. - .!S,. - .!S - .!s...
P)3 s s 3 3
(e [(e [[
7 7 7 7 7
9 9 9 9 9
il =ik <l <l ke <l ke <l ke
508 505 508 5035 508

6)The site for Shereen Khoja stemmer code http://zeus.cs.pacificu.edu/shereen/research.htm.

24

www.manaraa.com

http://zeus.cs.pacificu.edu/shereen/research.htm

For each token we modified the Khoja stemmer to light stem each token. We
need to be careful in choosing the type of stemming we use so that we do not
affect the iteration counting and term extraction process.

In this stemmer we remove the definite article, none Arabic letter, diacritics,
and the punctuations. Then we check if the token length is less than two letters we
add blank to the stemmed word vector. After that, we check if the resulting token
is a stop word we add blank to the vector if not we add it to the vector.

Stop words are very frequent tokens and do not have any effect on the results
and not linked to specific text or domain so we exclude them.

Table 3.2 shows a preprocessmg example of the statement:

“BBC Arabic dA.IS.I u\ JL.L\AS\ (w3 @}J}‘}“ A\;_D!\ ‘;\ L;SJ.: e).u)\.c g_u.a_:\ Ja;
e ale v, o D3 A Yav g Al o) e lS YT uyéu\‘ﬁﬁu%u\h&jﬂ
EBT

The original tokens of the text are listed in the first column and the second
column contain the same word vector after removing the definite article, the third
contains the tokens without diacritics, the fourth contains the vector without
punctuation, The fifth column shows the removal of the non-Arabic letter to give
the stemmed token vector shown in the last column. For the given statement the

result of the overall preprocessing is:

“alsh Wl Sul il b g pde JaIS Sl o)) dad LSS e e e calil b
ke 8 A e | e 167,

3.3.2 Candidate term extraction
The second step in this stage is the term extraction, which begins with the
merging of the resulting words vectors from the preprocessing step into one vector
for each domain; so that, we could extract the terms for each domain and count the
iteration on it. There are several methods for the term extraction.

For example, in morpho-syntactic patterns method (MP) the combination of
n-grams words is done by following a pattern of grammatical categories, such as
NA, or NPN. The MP method is a linguistic based method, and since the
grammatical composition of a term determines if this term will be considered as a
term.

Also the noun phrase method (NP) tries to identify n-grams annotated as a
noun phrase by the parser that is, a set of n words organized around the head of a
noun phrase. So, the NP method has more linguistic complexity, since it is based
on full syntactic analysis of the terms.

25

www.manaraa.com

In previous methods a tagger is needed but Arabic taggers is inaccurate as the
percentage of words that not found by Buckwalter Morphological Analyzer
(BMA) is about 25 percent [31].

Also they do not cover all the possible collocations in the text that could have
a big effect on the extracted collocations (terms). So, we found that the n-gram
method (NG) is the best method that cover all the possible collocation. N-gram
extracts sequences of n words from the text and uses statistical measurements to
evaluate the probability that each of the sequences has to be classified as a term,
that is, the more frequently these words appear together, the higher is the chance
that they can be considered a term [57][58][49].

For the term extraction in this model, we use a sliding n-gram window with
one to four words length to extract the candidate terms from the domain word
vector. It can be used as the length of the term that exceeded this length is
statistically les stronger. The proposed algorithm for term extraction is as follows:

1. For each domain read the stemmed word vector file and do:
2. For each term length (1 to 4) do
A. Slide the window with term length N over the domain stemmed
word vector.
B. For each extracted window do
i. If the window contains a stop word we ignore the term else add
the term to a domain term vector.
3. Finally write the domain term vectors to files.

For example, statement stated in section 3.3.1 above, the resulting term
vectors is shown in Table 3.2. The first column represents the stemmed word
vector as an output of the previous stage. When moving a window with one word
length and drop the blanks we will get the second column in the table. The same
thing is done in the third, fourth, and fifth columns, but the window size is become
two, three, four words length simultaneously and dropping any window that
contains a blank.

3.3.3 Iteration counting

The third step is iteration counting. The kind of counting we need is related to
the ranking method we intend to use for the extracted candidate terms. There are
several kinds of counters and measures. The weighting method proposed by [13]
for ranking a term over multi domains employs distributional behavior of term
candidates within the target domain and across the rest of the corpus as statistical
evidence presented in chapter two needs the following counts and frequencies to
be calculated:

1. The total frequencies of all the candidate terms (Fr).

26

www.manaraa.com

2. The frequencies of a term within the domain (f,z).
3. The frequencies of a term outside the domain (£, z).
4. The number of document the term appears in over the domain (d,,).
5. The number of document the term appears in over the rest of the corpus
(daa)-
The total number of term candidate (V).
The total number of document (D).
Table 3.2: Term extraction with 1 to 4 words length
. One
Original word Two words Three words term Four words term
text term term
il Je o e e e WSS e s
Je > e LS5 pe s il b p g yihe Ja
B = L5 e B g5 phe IS5 Sl ba g 5)
e S 5 sl bl bd g e
LS 53 alai| & 5 e JaiS P TTENT
Y bi g 5 phe
la i S il il
s Jai$y sk &l
& 5 ria 3 Adlssy
Hatie Sl
&k
Jei sk
g s e B
Sl D
<l ke
o
sk
) i sLS
PL;
Prcy
<l

We use this methodology for term ranking because we are using several
domain corpus and this methodology quantify the three types of linguistic

27

www.manaraa.com

evidences (Candidate evidence, Modifier evidence, Contextual evidence) derived
from the prevalence and tendency measures and adjust the contribution of the
contextual weight.

Our model calculate all the previous frequencies in the term extraction stage
and save the results in files for each term length and domain to be retrieved in the
ranking process. How we use these frequencies is discussed next in the term
ranking process.

The proposed algorithm for iteration counting is as follows:

1. For each domain read extracted term candidate vectors with length (1
to 4).

2. For each term within the vector.
A. Count the frequencies of a term within the vector.
B. Count the number of document the term appears in over the

domain.
3. Finally, write the domain iteration counting vector to a file.

The overall process for term extraction and iteration counting is presented in
Figure 3.4. The process starts by reading the domains. For each domain we read
the stemmed token vector.

Beginning with the first token we move a sliding window over the vector
from the beginning to the end; and, for each window we check if the term snapped
by the window contains a blank we ignore the current term if not we check if the
term have been already taken; before we increase the term counter if not we add
the term to the term candidate vector and check if it is the first time appear in the
current document we increase the document counter. This process is repeated for
each window size.

Finally, we store the term candidate, term iteration, and document iteration
into files to be retrieved in the ranking stage.

In this process we exclude the windows that contain blanks these blanks
replaced the stop words and other nun Arabic word in the original text.

The resulting term candidate and iteration matrix depending on the example
we use in section 3.3.2 above is shown in Table 3.3. As we see in this table for
each term length we count the number of times the term appear in the domain and
the number of document the term appears in. We notice that the number of
iteration decreases when the term length increases but the rank of the term increase
as we will see in the section.

28

www.manaraa.com

For example, the simple term (ql=) iterate 8127 times over 1877 document.
This means that the term is frequent over the document but this does not mean the
term is domain representative. If it's frequent over the rest of the corpus is greater
than in this domain this means it is not domain relevant. On the other hand, a term
like (s554) could be domain representative if it does not located in the rest of the
corpus although it frequent in the domain is 2. As for the complex term the
evidence will be calculated depending on the prevalence and tendency of the term
itself and also on the head and the modifier of the term over the domain, and
across the rest of the corpus. A detailed example will describe the use of these
frequencies in calculating the rank value of the term in the next section.

29

www.manaraa.com

Read Domains /

There is
another domain

Store the Corpus term candidate
matrix and term iteration and
document iteration matrixes

Read the domain
stemmed tokens file

There is
another token

Sliding window
size =1

Yes
Is sliding

window size <4

Dose the term
exists in the
term vector

Snap the tokens under the
window beginning from
current token

Add the term to the domain

term vector and Increase domain term Sliding window
set term iteration counter to 1 iteration counter size +=1

The snap dose
not contains
plank

Is this the first time
the term appear in
document

Increase domain term
document counter
|

Figure 3.4: Term candidate extraction and iteration counting

3.4 Term candidate ranking stage

Term candidate ranking is the third stage of this model. In this stage we are going to
give a value for each term candidate this value will be used in the evaluation of the
relevancy of the term to the domain. Then, we store these values in a matrix with two

columns for each domain one for the term and the other for the rank value[59][60]. The
ranking methodology used by [13] will be as follows:

30

www.manharaa.com

The Termhood of term a (TH(a)) is the final ranking value of the term and as we

see in equation 3.1. The rank value depends on the candidate evidence, in the form of
discriminative weight of the term (DW (a) Equation 3.1), and the adjusted contextual

contribution of this term (ACC(a) Equation 3.7) contextual evidence [13].
TH(a) = DW(a) + ACC(a) (3.1)

Table 3.3: The iteration matrix for economy domain

ne 5| ® - 5 2 5 2
word 3 & Two words g g Three words g S Four words term & S
= term = b= term = = = £
term g Q £ g £ S £ S
[e el a el a el a8

ba 160 | 117 | wdibs [24 [15 | Seewlibs [1 [1| sSebcbibigsyae [1)1

bl | g7 | 52 | el | 3 | 3 | culibighe
59 53 LS5 e 3 3

769 | 500 | o= | 470 | 187

Elw s

66 | 50 | &srde e

dail [1287 | 475 | bag sk

w50s) | 1052 | 356 | Sl el

Rk |o|-
Rk |o|-

Okie | g4 | 57 sk ally

gsxie | 937 | 336

Ay | 227 | 191

P I

dS | 9 | 7

ple 8127 | 1877

aaley 52 33

BE« 101 92

@bl | 878 | 537

The discriminative weight is measured using the equation 3.2. As shown in the
equation, this measure depends on Cross-domain distributional behavior (domain
tendency of the term DT (a)) and Intra-domain distribution (domain prevalence of the

term DP(a)).
DW(a) = DP(a)DT(a) (3.2)

The domain tendency of the term is measured depending on the frequencies of a
term within the domain and frequencies of a term outside the domain as shown in
equation 3.3.

31

www.manaraa.com

DT(a) = log, (ﬁ + 1) (3.3)

fagtl

Where f.s Is the frequencies of a term within the
domain, f.gz is frequencies of a term outside the domain.

The domain prevalence of the term depends on the term itself for simple term (one
word term) it is measured using equation 3.4 and for complex term (more than one word
term) it is measured using equation 3.5. The prevalence for simple term is measured
depending on the frequencies of the term over the domain and across the rest of the
corpus and the total frequencies of it to the total terms iterations. On the other hand, the
prevalence for complex term depends on the prevalence for the header of the term and
the value of the modifier evidence of the term.

_ Fre¢
DPh(a) = logyy(fae + 10)logy, (ﬁ + 1'3) (3.4)
@d @d
DP(a) = 1ng(fﬂd +10) DPh(a)MF(a) (3.9)

Where Fr- is the summation of frequencies of all the terms. £ is the
frequencies of a term within the domain. f_ 7 frequencies of a term
outside the domain. MF(a) the modifier factor. DPh{a™) the domain
prevalence of the term header.

The modifier evidence of term (in the form of modifier factor) is calculated using
the equation 3.6. As shown in the equation the modifier factor depends on the
summation of frequencies of all the modifiers of the term over the domain and across
the rest of the corpus.

MF(a) = log, (cttan7c/ma +1

EmEMar‘ll"Eme +1 (3'6)

Where M, is all the modifiers of term a. and TC is all the term candidate.

The adjusted contextual contribution of the term (ACC(a)) as contextual evidence

is calculated using equation 3.7. From the equation we found that adjusted contextual
contribution depends on the adjustment of the contextual discriminative weight and the
discriminative weight itself.

32

www.manaraa.com

|: Ar:mtr-irz}ﬂ} |I Dwirz}ﬂ}
DWia)+l /g ,1 ACDW (a)+1,
ACC(a:] = ACDW[&]

(3.7)
log. ACDW(a) +1

2 pWi(a) +1

Where ACDW (a) is the average contextual discriminative weight.
DW (a) is the discriminative weight.

The adjusted contextual discriminative weight of the term (ACDW(a)) is

calculated using equation 3.8. From the equation we found that it depends on
discriminative weight of all the context words of the term and the similarity between the
term and its context words (equation 3.9).

ee. DWc) = sim(a,c
ACDW (a) = (E“ a (lcj | (j) (3.8)
sim(a,c) =1—NGD(a,c) =6 (3.9)

Where C, is all the context words of term a and |C,, lis the number
of these words. And sim(a, c) is the similarity between and ¢ . Where 0

is a constant for scaling the distance value of NGD (Normalized Google
Distance).

The similarity is calculated using Google normalized distance (NGD(a,c))

equation 3.10 which depends on the number of the documents the term and its context
words appear in it.

max{log f(x),log f(¥)}—logf(x,¥)
logM — min{log f (x),leg f (¥)}

NGD(x,y) = (3.10)
Where M is the total number of documents f(x), f{v)is the number of
document x, y appears in and f(x, v) is the number of document both x
and v appears in.

From the previous we found that ranking method we use quantifies the three types
of linguistic evidences derived from the prevalence and tendency measures in the form
of Candidate evidence, Modifier evidence, and Contextual evidence. Furthermore to
adjust the contribution of the contextual weight to the overall termhood they employ
two measures the adjusted contextual contribution and the normalized Google distance.

33

www.manaraa.com

3.4.1 How the ranking process work
To clarify the practical implementation for the ranking stage we will rank the
following term (issxe 48,4 agul # k). Depending on the ranking methodology we
discuss before the rank is given by the equation described in equation (3.1) for the
domain (b=’
= DW (ko g wl @S540 ax010) + ACC(2 sk ppwl & 50 ao0)

DW 25k ogwl 851 @x0.00)
= DP(zsky ppwl 5,0 @5020) DT (b ppawl 85540 dx010)
DP (b ppwwl 85,1 @xo0)
= 10810 (£, 1, mpunias, s dmone
+ 10)[}?11(@@ gl @5, ﬁ;r_nmh)MF[c}bg gl @5 51 o)

f

ik pgwlaS)s dxain 1

DPh(C}Jﬂ; opwl @5 540 'ﬂ.l.omh) = DP(gsh) = logy, (fﬁhﬁd +

10)log (L+1n)
) YA ath

fa;hf_d = 42

f, =193

Fre = 22702550

DPh(z ks) = 45.35437395692971

i) £, +1
MF(a) = MF(z,h ppwi &S50 @) = log, (Z E”“”T“f : S+l
meEMgnTC "m

(f,-u_ui'd + fﬁSJ-._L::d + fﬁ_:m_uud + 1:]

MF (i, ppwl 8 5 @xoan) = +1

B
., ia = 5094
f.,.ig = 2798

7 * The direction of reading of the terms is from left to right. and the transliteration of tem S i agul 7 yay
4s. is (yatrah ashm shrkh mdmijh) an its meaning is (Raises merged stocks company)

34

www.manaraa.com

fas,_.:,a = 3018
F-i:;mmd =8
f-ﬁ:_muﬂ =5

MF (i, ppwl 8,0 axoan) = 1.386698584277142

DP(z 5k ppawl 8,0 @xoa0) = 150.810458492347

f’tjh-_"_ﬂ-ﬂ‘—ulrﬁjj-l-:' azosod +1 + 1)

f

DT{:c_,J-::-._v pq;_-.ul a5y ﬁ._:a-_.o_t,o] = lngz(
by ool 4550 dxoan d +1

f

2ok gl 850 Axoand 0
DT(z5ky ppowl 85,0 @xoin) = 1.5849625007211563

DW (ks ppwl @554 @voan) = 239.02892142693446

(Bt) (- aemwiae)

HCC(E_;JEL_I)‘:'*-E—'-'-'i ﬁg}—w m“"“) = ACDW{:E} AEDW{:!‘I} 141

2 DW(a) £+ 1 T °

log

cec, DW(c) = sim(a, c})

ACDW (z5kas ppwl 8 4 @o00) = (E]

ACDW (ks ppwl & 5 @xo0)

/ {DW(QJ:;E) = sim(z,ky N_m:i &S s @0, Q,Jﬂgz) +\

DW (ppwl) = sim (£, ppwl @8 i 00, ppwl) +

DW (&S i) = sim (z5ko pgwl @55 @cxon, 8,) +

DW (azeos) * sim(z,k ppwl 85440 @303, 2x010)
IC, |

Sim(f:_;.bg ,.ug_-.ul a5 , i Azeoon, 7ok) =1—NGD(a,c)

35

www.manharaa.com

maxflog f(x),logf(¥)} —logf(x,v)
logM — min{log f(x),leg f(v)}

NGD(zpky ppwl @S i @xonn, oy) =

NGD (s ppwl @5 @xonn, 5k)
_ max(log f(eoly agwl a5, x010), log f (25k)} — log f(erbs gl @S, dxo10)
logM —min{log f(z b pgwl 85,4 axoan), log fku)}

Where f(x), f(¥) is the number of document x, ¥ appears in.

Fekbs ppwl a8 10 Axonn) = 1

fler) =198

M= 17759

NGD(zyhy jogwl @S, @xoao, 25k) = 0.5404657569855092
sim(eydas pgwl & 5uis @0, ook) = 0.45953424301449075
sim(zyh japwl @554 @xoan, pgwl) = 0.21141613920164826

sim (g pgwl &5 5uis @xoao, 85,) = 0.24694890345474285

sim(zyh ppwl 5 54 @enn, @xoas) = 0.7460402536935407

DW for one word term is calculated by the equation DW(a) = DP(a)DT(a)
DW (e) =0

DW (pgwl) = 68.02777610376341

DW (&5,) = 67.49336833015924
DW (@xxoan) = 41.54344097198535

ACDW (g5 g wl 8,40 @xx020) = 15.510665580993571
ACC(zsh ppwl & ,4is @xorn) = —1.81562164476214E — 5

TH(z b pgawl 85,0 dx010) = 239.02890327071802

Then, the ranking of term Zssas 48,5 agul = ks over the domain L2l value is: 239.
If the term occurs in other domains we compare the ranking value and assign the term
to the domain with large rank value.

The overall diagram for term ranking is shown in Figure 3.5. From the flowchart
we found the process is begin by reading the vector of term candidate and term
iteration and document iteration from the saved files for each domain; then, for each

36

www.manaraa.com

term we read the document iteration and term iteration for the term and pass these
values to the ranking procedure. Then, save the rank value for the term into the rank
vector. Finally saving the vectors to a file.

The term will have a rank value for each domain it appears in. An example, of the
resulting rank vector values will be like displayed in Table 3.4 depending on the
example we use in sections 3.3.1 above, 3.3.2 above, and 3.3.3 above. This table is a
ranking matrix for one domain. In this matrix the value zero means this term is weakly
relevant to this domain and any term with 0 rank value will be excluded from the term
comparison between domains, the bigger the value the strongest the relation will be.
That does not mean the term with big value is related to this domain. May be, this term
have a larger value in other domain. Also, we can see that the more the term size
increase the stronger the relation to the domain will be.

37

www.manaraa.com

Start

Read the term iteration Matrixes
Read the doc iteration Matrixes
Read Term Candidate Matrix

d= number of domains
Domain Counter =0;

v

Add New Domain Term Ranking Vector

Domain
Counter <d

Current term Size =0

Store the term Ranking
Matrixes

Domain Counter +=1

‘ [)

Current Term
Size <4

T = number of terms within
current domain term Vector

v

Term Counter =0

Current Term Size +=1

| 'y

Term Counter +=1

)

Calculate the rank value of the
term and add it the current term
ranking vector

Term
Counter<T

Figure 3.5: The flow chart of the ranking process

38

www.manharaa.com

Table 3.4: Term ranking matrix for one domain

One

\{\(/e(')’:g \Ff;r;l; Two word term \Ff;:l; Three word term \Ff;:l; Four word term 5;3';
Ry | g | wblks) ogg [Sl | 1p5 | Splcuihipgde | TV
bl o190 | Sl | g | Culihag e | 137

e 1128 U 0 | Ssbewliba | 57

e 0 LS e 84

e w30 A3 g7p

S50 | essmedsS |0

@503 | 213 | sSslieall | 318
S | adsh @l 0

goria |0
Ssbo| 161
s 0
sk
lyeslS | 0
e
aal<s, | 245
A 0
<l | 381

3.5 Term Distribution stage

The fourth stage in this model is term distribution over the domains. This process
is done by assigning each term in the candidate term matrix to a specific domain
depending on the rank value of the term. It's needed to construct a matrix for domain
terms to be used in a classifier for testing the accuracy of term extraction model.

In this stage we use a simple method for term distribution. If the term exists in
several domains we put the term in the domain which have the highest rank value and
remove it from the other domains.

39

www.manaraa.com

Depending on the same example in section 3.4.1 above and after ranking the

example term vector to the ten domains we got the Table 3.5.

Table 3.5: Comparing rank results of candidate terms from the sample over the

domains

term Rank values for the domains
1 2 3 4 5 6 7 8 9 10
BEEN 0 0 no no no no no no 0 0
Gl 110 | 0 | no | no | no | no | no | O 0 | no
e 128 | 0 no | no | no | no | no 0 0 0
B2t 0 0 no no no no no 0 0 0
e 0 0 no no no no no 0 0 0
LS 0 Yée | no no no no no 0 0 0
Aa) 0 0 no no no no no 0 0 no
30 213 0 no no no no no 0 no no
i 0 0 0 | 161 | O no | no 0 0 no
Jaisy 0 0 0 0 0 0 no 0 0 no
g 5 e 0 0 0 0 0 0 0 0 0 no
Sl 161 | no 0 no | no | no | no | no | no | no
&b 0 0 0 161 | 128 0 0 0 0 0
alsh 0 0 0 0 0 0 0 0 0 0
| e slS 0 0 0 no 0 0 0 no 0 no
ale 0 0 0 0 0 0 0 0 0 0
Al 245 | 0 0 no | 77 0 0 no | no | no
B 0 0 0 0 0 0 0 0 0 no
@l bl 381 | 0 0 0 no 0 0 0 0 no
il laa 239 | no [no | no | no | no [no |[no |no no
Ol il O [no | no | no | no | no [no [no [no no
e A 0 no no no no no |no no no no
LS5 e 84 no no no no no |no no no no
sl Al 471 | no | no | no | no | no |no 0 |no no
g s osie JiS 0 no | no | no | no | no [no |no |no no
bi g 5 pda 263 | no | no | no | no | no |[nho |no |no no
S il 38| no | no | no | no | no [no |no |[no no
Al sha &l 0 0 no | no | no | no |[no |[no |no no
Ol cul laa 165 | no | no | no | no | no [no |no |no no
Gl L g 5 i 137 | no | no | no | no | no |[no |no |no no
Sl il laa 57 | no | no | no | no | no [no |no |no no
Ssbcabiliesyia [VY | no | no | no | no | no [no |[no |no no

40

www.manaraa.com

As shown in the table there is a rank values for domain 1 more than the other
domains because the example is taken from it.

Also we notice that there are some terms do not appear in the other domains these
terms are marked as (no). Other terms, there rank value is (0) this means the term is
weekly relevant to the domain.

Some terms are ranked over several domain like (4<%), ranked for domain 1 and
domain 5. The winner domain is the domain with higher rank value.

Some domains do not rank any term of the sample although they are existing in the
candidate terms of the domain. This means all the terms of the example are not related
to these domains.

Terms like (LS_5) is not ranked in its original domain (domain 1) and ranked in
other domain (domain2). This means the term is strongly related to the other domain.

Also we found that the complex terms (terms with two and more words) are
stronger than the terms with one word to the target domain because the complex terms
is less frequent the simple term.

Finally, the strongest relation between term and domain is always found in the
complex terms.

The final domain term matrix for the previous sample will be as shown in Table
3.6. In this table we exclude the terms with rank value zero and the term go to the
winner domain.

Table 3.6: Sample of Domain term matrix

1 2 3 4 516|781 9]|10
i LSy e
52 &
30l

Sl
s

<l ble
il o
LS5 pe
=TS o) alas)
ba ¢ 5
oS sli il
il b g g e
Sl il Jas
Sl il ek g g pie

41

www.manaraa.com

Chapter 4: Realization of the Model

In this chapter we present the implementation of the model over a real corpus and the
difficulties that faced the implementation of the model. We discuss some programming
problems and the solution to these problems like corpus size, reading the corpus, stemmer
modification, and other problems.

4.1 Component diagram

To realize the model we divide it into four main components: candidate term
extraction component, term ranking component, term distribution component, and the
classifier component. As shown in the component diagram in Figure 4.1, it's clear that
the preprocessing component needs the corpus as input and give term candidate matrix,
term iteration matrix, and document iteration matrix outputs are needed as output.
These three outputs are needed to the ranking component to give the rank matrix for
term distribution component. The term distribution distribute the terms and give a
domain term matrix to the classifier component to classify the testing documents
giving the classifier results report to evaluate the model.

several domains

corpus Document iteration matrix

Documents —O)—

| O Preprocessing and |Term iteration r@%

== candidate terms Candidate

== extraction and O) terms tanking

iteration counting :
Term candidate mafrix Term
Term rank.s O
candidate matrix &/
matrix
Terms
distribution
Domain

term

Testing corpus matl’ix\l,/
Documents Classifier output
O) Document O
classifier

Figure 4.1: The model component diagram

Next we will discuss each component separately.

42

www.manaraa.com

4.2 Class diagrams

¢ Class diagram for term extraction and iteration counting.

As shown in Figure 4.2 the class diagram of candidate term extraction and
iteration counting is composed of 10 classes. The main class of this diagram is the
StartTermCandidateExtractionProcess class. This class uses the ListOfDomain
class to read the directories of the corpus and save their name as the list of domain.
Then, use the ListOfFiles class to read the files within the domain directory and
save them into a list of files to let the SingleTokenFileReader class read the content
of the files as tokens and put them in a token vector. While reading the file the
StartTermCandidateExtraction instantiate a ModifiedLightStermmer class that
starts the LoadStemmerFile class to read the stemmer files and save their content to
vectors that will be used in the ModifiedLightStermmer to stem each token in the
token vector and then save the outputs of the stemming process into a stemmed
token vector. This vector is used to extract candidate terms and count the iteration
for these terms. Finally, it calls the vector to file writer to write the vectors to files.

«Java Class=
(9 MainClass

&5 corpus : string
&5 testingCorpus : String
&5 maximumTermlength : int
4 totalDocunmentNumber : int
4 totalTermCandidateNumber :int |
)c MainClass ()
#° main ().
«Java Class=
(3 ListofDomains
4 domainlist: File | .

4 fileFilter : FileFilter

\.}c ListOfDomains {)

«Java Class=»
(3 singleTokenFileReader

4 fileVector : Vector <String>
\.}c SingleTokenFileReader ()

 addVectorFromFile ()

aluses

«Java Class»
(3 StartTermCandidateExtractionProcess

termCandidate : Vector<Vector=
doclteration : Vector<Vector>
termiteration : Vector<Vector=
stemedfilevector : Vector<Vector>
corpusNumberOfFiles : int
termCandidateOccurance : int
fileWriter : FileWriter

fileBuffer : BufferedWriter

stemer : ModifiedLightStemmer

termindex : TermindexRetreval

[- - - - - - - -

vectorFileWriter : VectorToFileWriter
\.}c StartTermCandidateExtractionProcess {)
B UpdateDocltteration ()

wlises

«Java Class=
(3 ModifiedLightStemmer
4 stemerFiles : LoadStemerFiles

\.}c ModifiedLightStemmer ()

@ formatTheword ()
;8 removeDiacritics ()
| removePunctuation {)
ym removeMNonletter ()

8 checkDefiniteArticle ()

«@sem

=Java Class=»
(3 LoadStemerFiles

4 stemerFilesVector : Vector<Vector=

\.}c LoadStemerFiles {)

=Java Class=»
(3 VectorToFileWriter

\.}c WectorToFilewriter ()
@ Write ()

«Java Class=
(3 TermIndexRetreval

\.}c TermindexRetreval ()
@ binarySerchForinsert ()
@ binarySerch ()

=Java Class=»
(3 VectorToFileWriter

\.}c WectorToFilewriter ()
@ Write ()

wlses

«Java Class=
(3 ListOfFiles

4 files : File
4 fileFilter : FileFilter

@ ListOfFiles ()

Figure 4.2: The candidate term extraction class diagram

43

www.manaraa.com

When adding a candidate term the class calls the TermIndexRetreval class
to find if the term is already exists; if not, it adds it to the statistics vectors and
instantiate the counters of the term.

¢ Class diagram for term ranking.

The class diagram of the second component of the model described in
Figure 4.3 contains the StartRankingProcess class that starts the ranking process by
calling the ListOfDomains class that reads the list of domains then starts
LoadStatistics class to read the data stored by the previous component then start
ranking each candidate term in the list for all the domains by calling the
TermRanker class. TermRanker calls TermindexRetreval to retrieve the index of
the term to be used for calling the statistics of the term for completing the rank

process.
Java Class=
«)ava Class= -
=Java Class= : (3 TermsRanker
(3 MainClass (9 StartRankingProcess
F S corpus : String | Fuse= . & rankVector : Vector<Vector> | suses | 4 M :double
&8 testingCorpus : String ec StartRankingProcess () 4 Fic: double
5 K i T & domain : String
& maximumTermlength ;int :
- fues & docFreqA : double
& totalDocunmentMumber : int o TermEreaAD : doubl
& totalTermCandidateMumber @ int SRR «Java Class» @ TermiTEqAD : doubie
¢ (3 ListOfDomains 4 TermFreqADnot : double
2 MainClass () o .
‘LQS i & domainlList : File 4 DWa : double
& manil & fileFilter : FileFilter 4 ACDWa : double
@ ListofDomains () 4 termlength :int
i i & terms : Vector<Vectors
wlses i euses 4 dodlter : Vector<Vectors
' 1
: & termiter : Vector<Vector=
_ 4 domainList : File
«Java Class» «Java Class» & maxToken :int

(3 Loadstatistics (3 SingleLineFileToVectorReader & glopalcounter : int
& terms : Vector<Vector=

clsen 4 index : TermindexRetreval

4 termsitter @ Vector<Vectors - ol: singleLineFileToVectorReader ()
& docitter : Vector<Vector> @ read ()

ec TermsRanker ()
@ rank ()

& readfile : SingleLineFileToVectorReader
@ Loadstatistics ()

B documentFrequency ()

@ domainTermFrequency ()

@ domainMotTermFrequency {)
«Java Class= TH()
(3 TermIndexRetreval &

B ACC()
@ TermindexRetreval () - = log2 ()
@ binarySerchForlnsert () “Use» B ACDW()
@ binaryserch () @ sim ()

@ NGD{)

@ Dbw()

@ DP()

| MF{)

@ DT ()

Figure 4.3: The term ranking class diagram

44

www.manharaa.com

¢ Class diagram for term distribution.

This class diagram describes the content of term distribution component as
shown in Figure 4.4. This class starts with calling LoadRankresultsAndTerms to
read the rank matrix and candidate term matrix for the entire domain by calling
ListOfDomains class. Rank matrix and candidate term matrix are then passed to
TermDistriputionProcess to start the candidate term distribution. At the end,
TermDistriputionPr-ocess calls VectorToFileWriter to write the domain term
matrix to a file to be used in the next component.

«Java Class»

) _«Ja\r_a Class= #)ava Classs G TermDistriputionProcess

(3 SingleLineFileToVectorReader (3 MainClass S
P——— & corpus : string 5 - Vector «Vectors
@ SinglelineFileToVectorReader ()) 5.) &" lermsVector : Vector<Vecior>
@ read () ey f-s te;_thg_QQ_Lp_us_.ﬁLLng_ 4 domainWords : Vector<Vector=

& maximumTermlength :int «uses. | A maxtoken : int

4 totalDocunmentMumber : int 4 minRank - int

4 totalTermCandidateMumber @ int A writer : VectorToFileWriter

.- .

4 MainClass () 4 index : TermindexRetreval

5 : .
& main () J TermDistriputionProcess ()

wuseh NP
: @ startDistripution {)

e ! ; @ distriputeTheVector ()
alses !

*LE,ISEW

«)ava Class» «)ava Class»

(3 LoadRankresultsAndTerms © ListofDomains «=Java Class»
(3 VectorToFileWriter

4 terms : Vector<Vector> “uses 4 domainList : File

4 rankVector : Vector<Vectors 4 fileFilter : FileFilter

< - .
& readfile : SinglelineFileToVectorReader @ Listofbomains ()

(,[LoadRankresultsAndTerms ()

(,c VectorToFileWriter {)

@ Write ()

Figure 4.4: The term distribution class diagram

¢ Class diagram for classifying documents.

The final class diagram is the classifier diagram shown in Figure 4.5. It
loads the domain term matrix using the LoadDistriputedDomainWords class to be
passed to TestingStage class that reads the document to be classified and there
domains using three classes ListOfDomains, ListOfFiles, and VectorToFileWriter.
Then passes all the data to ClassifyDocument class to be classified. It calls the
ModifiedLightStemmer class to stem the document before being classified. Finally,
it calls the VectorToFileWriter class to write the classify report to a file.

45

www.manaraa.com

w)ava Class»

alava Classs =Java Clazss {3 ClassifyDocument

(3 MainClass (3 TestingStage o stemmer : ModifiedLightStemmer
&8 corpus : String - - & index : TermindexRetreval
& testingCorpus : String ~ [oottooos IR ssemeeee 3 d:lTestllngStage (,] | Zuzee o domainTerms : Vecter<Vectors

5 i - I ' |
& maximumTermlength @ int ! [! o stemedFileVector : Vector=String>
o totalDocunmentNumber : int & maxToken :int

& totalTermCandidateNumber @ int
& MainClass ()

& domainsMumber: int

)) H & dom:int
8 main (] FE e et Ll - 1 L
ﬁs . - : allsen elses clisen & domRankMax: int
! | . . ! @ ClassifyDecument ()
wlises . ! @ classify ()
«lava Class»
! (3 ListOfDomains
allsen S - s =
i & domainlist : File =Java Classs «=Java Classs
& fileFilter : FileFilter (3 ListOfFiles {3 VectorToFileWriter chses
' . & ListofDomains () 4 files: File p — 1
«User : 3 & fileFilter : FileFilter VectorToFileWriter)
o ListOfFiles () ® Write ()
.'..
xJava Classs | o
() SingleLineFileToVectorReader =Usgs
i 1 «)ava Class»
& singlelineFileToVectorReader () «Java Classs © ModifiedLig mer
o read (] cusé: {3 LoadStemerFiles & stemerfiles : Load5StemerFiles
o i a stemerFilesVector : Vector<\V... “E.js'e',; & ModifiedLightStemmer ()
=use» : o LoadStemerFiles) @ formatTheWord ()
«Java Class= i 4@ removeDiacritics ()
{3 LoadDistriputedDomainWords : 4@ removePunctuation ()
a list: Vector<Vector-= | ___! ' 4@ removeNonLetter (]
& readfile : SinglelineFileToVectorfeader i checkDefiniteArticle ()
dz LoadDistriputedDemainWords ()

Figure 4.5: The classifier class diagram

4.3 Tools used

We use Eclipse as a java programming language because we have some
experience with it and it is a very flexible environment and java have a lot of tools that
could be very helpful. Also, java is very efficient language in memory management
and have the ability to construct vectors that have the ability to change its size in
running time.

We use Shereen Khoja Stemmer after modifying it for light stemming the tokens
from the corpus because it is written in java, easy to understand, and modify.

We used IBM Rational Software Architect version 8.0. For class diagram drawing
because it support reversal engineering.

We used Smart draw 2010 for drawing flow charts and component diagram.

We have programmed and develop some tools that help us in realizing the model.
These tools are:

e The domain reader that reads each folder as a domain.

46

www.manharaa.com

e The list of files name reader which read the files names within a folder into
list.

e To read the content of each file we use Khoja single token file reader.

e To save the results into file we programmed a vector to file writer.

4.4 Problems appeared during the implementation of the model

When we try to implement the model on the real data some problems have
appeared. We list these problems first and their solutions is listed in the following part:
1. The first problem comes out is the java heap error which means that the
memory is not enough.
2. When I run the system it talks a lot of time that exceeded to several days and at
the end it terminate without giving any indication for end execution or results.
3. When the system terminates | have to start over the experiment from the
beginning.
4. We need to merge the results for the experiment.
5. As the system depend on the term occurrence there is a lot of search tasks which
take a lot of execution time which need to be enhanced.

4.5 Solutions for the implementation problems

The problems listed before have different solution but we implement the available
one’s and we listed them here:
1. For memory error we use the —Xmx command for changing the execution
memory option.
2. For execution time that ends with system termination. We try to partition our
model to several execution units we found that we could implement the
preprocessing, term extraction, and iteration counting for each domain

separately.
3. We depend on files to save the results of each stage this help in overriding any

stage we complete and continue from the last finished stage. As shown in
appendix A for the model main class. We use three types of files:

e Files for term candidate

e Files for term iteration

e Files for doc iteration.

4. In some domains the number of files was big and could not be handled
together. So we write a code for domain separation as shown in appendix B
and limits the number of files to 500.

5. After separation and processing we need to merge the results for each domain
we write a code for merging the results as shown in appendix C.

6. Also we use sorted vectors for saving the results as there is a lot of search
processes and we use a binary search algorithm (appendix D) which saves a lot of
execution time.

47

www.manaraa.com

Chapter 5: Experiments and Results

In this chapter we present the common term extraction metrics and the specification
for each metric. After that we clarify the simple classifier that we have design using the
extracted domain term matrix to help us in evaluating the model by quantifying the output
of this classifier. The domain term matrix is extracted using our model. We compare the
outputs and construct a confusion matrix to measure the accuracy and reliability of the
model based domain term matrix classifier.

There are several metrics for evaluating term extraction methods such as shown in
term ranking metrics in section 2.1.3 we use Termhood method that ranks the term
according to its distributional behavior over the domain and across the rest of the corpora
[13]. This measure do not evaluate the accuracy of the extracted terms. To do this we use
the extracted domain term vector matrix to classify several documents and use the
precession and recall measures to evaluate the accuracy of the model.

5.1 Evaluation methods

We will use the confusion matrix to evaluate the accuracy of the domain word
matrix classifier resulting from our model. A confusion matrix is a specific table
layout that allows visualization of the performance of an algorithm or model.

A confusion matrix [61] contains information about actual and predicted
classifications done by a classification system. Performance of such systems is
commonly evaluated using the data in the matrix. The following table shows the
confusion matrix for a two class classifier Table 5.1.

Table 5.1: Confusion matrix

predicted
negative | positive
= Negative a b
=
O - .
© Positive c d

The entries in the confusion matrix have the following meaning:

e aisthe number of correct predictions that an instance is negative.

e b is the number of incorrect predictions that an instance is positive.
e Cis the number of incorrect of predictions that an instance negative.
e dis the number of correct predictions that an instance is positive.

48

www.manaraa.com

The following terms are defined for a two by two confusion matrix:
Accuracy
The accuracy (AC) is the percentage of the total number of predictions
that were truthful. It is determined using the equation:

a+d

c=——"—
a+b+c+d 1)

True positive rate (Recall, Sensitivity)
The recall or true positive rate (TP) is the percentage of positive cases
that were correctly identified, as calculated using the equation:

R=TP= (5.2)

True negative rate (Specificity)
The true negative rate (TN) is defined as the percentage of negatives
cases that were classified correctly, as calculated using the equation:

a

= a+b (5.3)

Precision
Precision (P) is the percentage of the predicted positive cases that were
correct, as calculated using the equation:

p=—no (5.4)

False positive rate
The false positive rate (FP) is the percentage of negatives cases that were
incorrectly classified as positive, as calculated using the equation:

b

FP =
a+b

(5.5)

False negative rate
The false negative rate (FN) is the percentage of positives cases that were
incorrectly classified as negative, as calculated using the equation:

c

FN =

Ce+d (5.6)

The accuracy determined by equation 5.1 may not be an adequate performance
measure when the number of negative cases is much greater than the number of
positive cases [61].

49

www.manaraa.com

Other performance measures account for this by including TP in a product: for
example the geometric mean (g-mean) [62], as defined in the following equations,
and F measure.

g_meanl =\ TP =P (5.7)
g_mean2 =\TP=TN (5.8)

F_(,t?2+1j>:=F=:--TP
~ B?s=P+TP

(5.9)

5% has a value from 0 to infinity and is used to control the
weight assigned to TP and P.

Any classifier evaluated using equations 5.7, 5.8 or 5.9 will have a measure value
of O, if all positive cases are classified incorrectly.

The previous measure is good for binary classification problem but when the
classification problem is not binary, the confusion matrix gets more complicated. In
this case we can compute classifier accuracy as:

p B 2, (true clasification)
couracy = total number of casses (5.10)

Where i is the class number and n is the total number of the classes.

5.2 Experimental design

5.2.1 The data
We choose (OSAc corpus) [35] which is collected from various websites as
presented in Table 5.2, the corpus includes 22,429 text documents. Classified into 10
domains (Economics, History, Education and Family, Religious and Fatwa's, Sports,
Heath, Astronomy, Law, Stories, and Cooking and Recipes). The corpus contains
about 18,183,511 (18M) words and 449,600 keywords after stop words removal.

We use the UTF-8 coding system because it is universal and widely used and any
type of document (html, doc, pdf) could be easily converted into text documents so
the model will be widely applicable.

We separated the data into two parts one for training and testing. The separation
of data is done manually before the training. The testing process will be applied by
classifying the document using the extracted domain term matrix from the training
stage. The domain term matrix size is shown in Table 5.5. The classifier testing
corpus that contains 4670 document distributed into ten domains as shown in Table

50

www.manaraa.com

5.3 is classified and the results of classification process was described in the
confusion matrix in Table 5.6.

Table 5.2: OSAc corpus web site sources [35].

Domain Number of | Web site's source
documents

Economic 3102 bbcarabic.com - cnnarabic.com -aljazeera.net
- khaleej.com - banquecentrale.gov.sy

History 3233 www.hukam.net - mogatel.com -
altareekh.com -islamichistory.net

Education and | 3608 saaid.net - naseh.net - almurabbi.com

family

Religious and | 3171 CCA corpus - EASC corpus mogatel.com -

fatwa's islamic-fatwa.com - saaid.net

Sport 2419 bbcarabic.com- cnnarabic.com - khaleej.com

Health 2292 dr-ashraf.com - CCA corpus - EASC corpus
- W corpus - kids.jo - arabaltmed.com

Astronomy 557 arabastronomy.com- alkawn.net-
bawabatalfalak.com- nabulsi.com-
www.alkoon.alnomrosi.net

Law 944 lawoflibya.com - gnoun.com

Stories 726 CCA corpus- kids.jo- saaid.net

Cooking recipes | 2373 aklaat.com - fatafeat.com

Total 22429

Table 5.3: The number of documents to be classified for the domains

. Number of
code domain
document
0 Economic 647
1 History 615
2 Education and family 712
3 Religious and fatwa's 713
4 Sport 522
5 Health 425
6 Astronomy 122
7 Law 213
8 Stories 173
9 Cooking recipes 528
51

www.manaraa.com

5.3 The classifier

The classifier we use is a simple classifier that uses the extracted domain term
vector to classify a document as shown in Figure 4.5 the API documentation of the
classifier in appendix E part vii. This classifier classifies 4670 document distributed
into ten domains. The classify process begins by loading the domain term matrix to
the memory and for each file of the testing corpus it reads the content of the file and
put each token in a vector. For each token we apply the light stemming process over
the token and check if the stemmed token is in any domain. If it found in a domain a
one is added to the domain counter and we have ten counters for the ten domains.
After finishing the document we select the domain with big counter value and classify
the document to this domain; after that, we compare the real domain with classified
domain. If they are equal, we add one to true counter if not, the one is added to the
wrong counter. The final report of the classifier gives the total true hits and the total
wrong hits for each domain.

5.4 Results and discussion
Table 5.4: Number of term candidate for the domains

. Word Term candidate size
code domain veclor size . > . 2
0 Economic 1618618 | 63035 | 435188 | 442312 | 339321
1 History 3668139 | 154943 | 789543 | 627274 | 411164
2 Education and family | 2241672 | 122038 | 500072 | 383418 | 251896
3 Religious and fatwa’s 1527183 | 58452 | 201014 | 160079 | 108847
4 Sport 1266928 | 47198 | 231434 | 235817 | 188543
5 Health 1490953 | 46942 | 157712 | 124271 | 84680
6 Astronomy 275469 | 22892 | 63914 | 52381 | 37312
7 Law 619292 | 28977 | 77772 | 61927 | 43573
8 Stories 2065902 | 101488 | 323691 | 230145 | 146663
9 Cooking recipes 268387 | 14997 | 62530 | 68563 | 54507

After implementing the candidate term extraction process on the corpus we got
the following table that we coded the domains of the tested corpus in it from zero to
nine as shown in Table 5.4. We write down the word vector length for each domain
and for each term length the size of the term candidate. After implementing the rank
method and distribute the terms over the domain depending on the rank value for
each term to the ten domains we and exclude the terms with rank value equal or less
than zero we got Table 5.5.

52

www.manaraa.com

Table 5.5: Number of distributed terms over the domains

i Word Domain term size
code domain vector size 1 2 3 4
0 Economic 1618618 | 24281 | 400464 | 433403 | 333269
1 History 3668139 | 94630 | 728401 | 610012 | 401045
2 Education and family | 2241672 | 60425 | 447830 | 370287 | 244885
3 Religious and fatwa's | 1527183 | 17281 | 170256 | 153029 | 105068
4 Sport 1266928 | 16623 | 209520 | 228048 | 181979
5 Health 1490953 | 16800 | 139945 | 119822 | 81926
6 Astronomy 275469 | 6079 | 53738 | 48490 | 34777
7 Low 619292 | 7316 | 66600 | 58972 | 41791
8 Stories 2065902 | 44111 | 282002 | 218437 | 140094
9 Cooking recipes 268387 6594 | 56600 | 64668 | 51641

We can conclude from comparing the one word term from Table 5.4 and Table
5.5that the distribution term process over the domains excludes a number of terms
more than the two, three, and four word terms. Figure 5.1 and Figure 5.2 clarifying
this effect. This means the one word term is less relevant to the domain.

1 token term length

180000

160000

140000

A
/N

120000

/ A\

100000

80000

r—# _-

60000

¥ SR o caniial

40000
- 20000

e Term Candidate

el Jomain Terms

Figure 5.1: Comparing candidate terms with distributed terms for one word

length

As result, when the term length increases the term relevancy to the domain
increases. On the other hand, we can say that the one word term is very likely to

appear in several domains more than others.

53

www.manaraa.com

4 token term length
10 9 8 7 6 5 4 3 2 1
=== Term Candidate ==fll=Domain Terms

450000

400000

350000

300000

250000

200000

150000

100000

50000

Figure 5.2: Comparing candidate terms with distributed terms for four word

length

Furthermore the domain relevancy with term size effect is depicted in Figure 5.3.
It represents the economy domain and this effect is true for the other domains. As it
shows in the graph when the size of the term increased the excluded terms reduced.

Economy Domain

==g==Term candidate size ==fll=[Domain term size

500000
450000
400000
350000
300000
250000
200000
150000
100000
50000

Figure 5.3: Term candidate and domain terms over term size for economy

domain

As it shown in Table 5.6 the numbers from zero to nine represent the domains. REL
represents the reliability of the classifier to classify the document domain. This means that
the classifiers do not classify any document to the target domain. ACC represent the
accuracy of the classifier to classify the document domain. Which means that the
classifier will not classifies the current domain to any other domain. The confusion matrix

54

www.manharaa.com

is used for evaluating the performance of a system using the data in the matrix. Confusion
matrix contains information about actual and predicted classifications done by a
classification system [61].

Table 5.6: The classifier confusion matrix for the domains

Real domain
0 1 2 3 4 5 6 | 7 | 8 9 |sSum| AcC
0 |esal| 1 0 0 6 1 0 0 1T [643 | o9
1 | 13 | 58 | 8 | 35 | 22 | 1 1T | 6 |35 | 2 |76 gg3
5 o | 27 | 682 2 0 5 o | o | 1 5 | 722 | go4
2| 3) 1 | 10 [676 |) o | o | o o | 587] o098
gl 4)) 0 o | 4% | o o | o | 1 o | 4| 100
é 5) 1 0) o | 418 | o0 | o0 | o | 15 | 44| 0096
2| 6)) 0)) o | 121] o o | 121 | 100
gl 7)) 0))) 207 | o | 297 | 100
O g) 2 |12 o | o0 | o o [136] o [150] o1
9 0 0 0 o | o | o o | o | o |59 | 505 | 100
Sum | 647 | 615 | 712 | 713 | 522 | 425 | 122 | 213 | 173 | 528 | 4670
Recall | 0.98 | 0.95 [0.96 | 0.95 | 0.95| 0.98 | 0.99 | 0.97 | 0.79 | 0.96

As shown from the previous table we conclude that:

The rows 4,6,7,8 which represent the domains (Sport, Astronomy, Law, Cooking
recipes) respectively could be classified with 100 percent accuracy that this document is
not a member of other domains. This returns to the nature of the domain as these domains
and the kind of words that are used in these domains.

The rest of the domains is also highly accurate except for row 1 which represent
the History domain. It can be found that the History domain do not have a unique
terms that could represent it clearly.

All the domains are highly reliable except for the story domain as the number of
wrongly classified is high in aspect to the story tested documents. The majority of
error goes to history domain as the story and history domains are close to each other.

As it shown in the table the classifier is very accurate for classifying all the
domains except for the history domain also the classifier was highly reliable for all
the domains except for the low domain. When we have review the corpus and the
errors we found that the error in caused by the weakness of the corpus because of the
few number of websites the corpus is grabbed from.

The total accuracy of the classifier which is calculated using equation 5.10 is
0.95 percent. This is a highly accurate classifier.

55

www.manaraa.com

Reliability and accuracy of classifying some domains:

The accuracy of the classifier for the sample domains in Table 5.7, Table 5.8,
and Table 5.9 is about 99 percent and the precision is about 100 percent and the recall
is 97 percent These values means that the classifier which depends on the domain
term matrix is reliable and highly accurate.

Table 5.7:Confution matrix for Economic domain

predicted
negative | positive
Negative 4014 9
actual —
Positive 13 634
Accuracy AC= 0.995289
Recall R= 0.979907
Specificity TN= 0.997763
Precision P= 0.986003
FP= 0.002237
FN= 0.020093
G-meanl= 0.98295
G-mean2= 0.988795

Table 5.8: Confution matrix for Sprot domain

predicted
negative | positive
Negative 4147 1
actual —
Positive 28 494
Accuracy AC= 0.99379
Recall R= 0.94636
Specificity TN= 0.999759
Precision P= 0.99798
FP= 0.000241
FN= 0.05364
G-meanl= 0.971827
G-mean2= 0.972693
56

www.manaraa.com

Table 5.9: Confution matrix for Astronomy domain

predicted
negative | positive
Negative
actual g_ : 4548 0
Positive 1 121
Accuracy AC= 0.999786
Recall R= 0.991803
Specificity TN= 1
Precision P= 1
FP= 0
FN= 0.008197
G-meanl= 0.995893
G-mean2= 0.995893
57

www.manharaa.com

Chapter 6: Conclusion and Future Work

To conclude our work and discuss our contribution and state some issues that need
further research and enhancement; we developed a new model for domain relevant term
extraction from Arabic text corpus. This model is constructed through four stages: First, is
preprocessing where we modified the Khoja stemmer to be a light stemmer to suit the
domain we work with. Second, is candidate term extraction where we use the sliding
window method for length from one to four to extract the candidate terms and we
excluded the terms that contains stop words in the window. Third, is the candidate term
ranking where we implemented a termhood ranking method that takes into consideration
the distributional behavior of the terms over the domain and across the rest of the corpus.
Fourth, we used a simple method depends on the rank value for each term over the ten
domains and assigned the term to the strongest domain.

After we extracted the domain term matrix we used this matrix as classifier. We
programmed a simple classifier that use this matrix to classify the documents that need to
be classified in the testing stage. These documents is classified by converted them into
stemmed word vector and then calculate the binary distance between the document vector
and the domain vectors and give the document the domain with high distance. This
process is done for all the documents and domains to be tested. Then calculate the
confusion matrix to evaluate the efficiency of the classifier that indicates that the domain
term matrix is efficient and effective for a classifier.

Our model takes several criteria into consideration like the specification of the
corpus the model work on. The term extraction method used in extracting the candidate
terms. The ranking methodology the model use for ranking the terms. The distribution
method for distributing the terms over the domains. Finally, the evaluating methods and
tools for evaluating the model.

The model deals with several domains so the corpus should be separated into
domains. On the other hand, most of the other works deal with general corpus and others
with one domain specific corpus.

The model use the sliding window method for candidate term extraction; on the
other hand, other works deal with several methods for term extraction like (NLP
patterns, Local grammar approach, or syntactic patterns). We used this method because
the other method depend on the taggers and the existing taggers has a low accuracy —
nearly 25 percent of the words not identified by the tagger [31] which affect the
accuracy of the models.

58

www.manaraa.com

The ranking method we used depends on several domains which measure the term
prevalence and tendency over the domain and across the rest of the corpus.

We use a simple method for term distribution over the domains to generate the
domain relevant term matrix which depends on the ranking value for the term over all
the corpora and assign the term to the domain with high rank. Other works deal with one
domain and this differentiation is not exist on other works.

Finally, we design a classifier depending on the domain relevant term matrix to
classify a domain known document and use a confusion matrix for evaluating the model.

Although the proposed model uses a several domain corpus, it uses a light stemmer
for preprocessing; extract the candidate terms using a sliding window; and, ranks the
candidate terms using a termhood method. There are still several ways for improving the
model:

e Use several corpuses and study the effect of the corpus change on the
results.

e In the preprocessing stage we could evaluate several preprocessing options
and compare the effect of each option.

e In the term extraction stage we could use other methods for candidate term
extraction like pattern passed, local grammar or other NLP methods and
examine the model for these options.

e For the term ranking stage we could experiment several ranking methods
and compare the implementation results.

59

www.manaraa.com

References

[1] J. Sager, A practical course in terminology processing. Amsterdam/Philadelphia:
John Benjamins, 1990.

[2] S. Love, “Benchmarking the performance of Two Automated Term-extraction
systems: LOGOS and ATAO,” university of montrial, 2000.

[3] T.Vu, A. Aw, and M. Zhang, “Term extraction through unithood and termhood
unification,” in International Joint Conference on Natural Language Processing -
IJCNLP, 2008, pp. 631-636.

[4] M. Syafrullah and N. Salim, “Improving Term Extraction Using Particle Swarm
Optimization Techniques,” JOURNAL OF COMPUTING, vol. 2, no. 2, pp. 116—
120, 2010.

[5] R. Mitkov, G. Corpas, and others, “Mutual terminology extraction using a statistical
framework,” Procesamiento del lenguaje Natural, vol. 41, no. Section 2, pp. 107—
112, 2008.

[6] A. M. Saif, M. J. A. Aziz, C. Science, and S. Publications, “An Automatic
Collocation Extraction from Arabic Corpus,” Journal of Computer Science, vol. 7,
no. 1, pp. 6-11, 2011.

[71 J. Nam, “A Local-Grammar-based Approach to Recognizing of Proper Names in
Korean Texts,” in the 5th Workshop on Very Large Corpora (WVLC-5), 1997, pp.
273-288.

[8] J. Foo, “Term extraction using machine learning,” Linkoping University,
LINKOPING, 2009.

[91 S. Katz, “Distribution of content words and phrases in text and language
modelling,” Natural Language Engineering, vol. 2, no. 1, pp. 15-59, Mar. 1996.

[10] W. Wong, W. Liu, and M. Bennamoun, “Determining termhood for learning domain
ontologies in a probabilistic framework,” In Proceedings of the sixth Australasian
conference on Data mining and analytics, 2007, vol. 07, pp. 51-60.

[11] J. Foo, “Exploring termhood using language models,” in NEALT PROCEEDINGS
SERIES VOL. 12, 2011, pp. 32-35.

[12] W. Wong, W. Liu, and M. Bennamoun, “Determining the unithood of word
sequences using mutual information and independence measure,” in Proceedings of

60

www.manaraa.com

the 10th Conference of the Pacific Association for Computational Linguistics
(PACLING), 2008.

[13] W. Wong, W. Liu, and M. Bennamoun, “Determining termhood for learning domain
ontologies using domain prevalence and tendency,” in Proceedings of the sixth
Australasian conference on Data mining and analytics, 2007, vol. 70, no. AusDM,
pp. 47-54.

[14] C. Jacquemin and D. Bourigault, “Term extraction and automatic indexing,” in
Handbook of Computational Linguistics, 2003, pp. 599-615.

[15] J. S. Justeson and S. M. Katz, “Technical terminology: some linguistic properties
and an algorithm for identification in text,” Natural Language Engineering, vol. 1,
no. 1, pp. 9-27, 1995.

[16] S. N. Kim and L. Cavedon, “Classifying Domain-Specific Terms Using a
Dictionary,” Proceedings of the Australasian Language Technology Workshop, vol.
09, pp. 57-65, 2011.

[17] J. R. Firth, Papers in Linguistics 1934-1951. Oxford University Press, 1957, p. 233.

[18] K. Kageura and B. Umino, “Methods of automatic term recognition: A review,”
Terminology, vol. 3, no. 2, pp. 259-289, 1996.

[19] S. Crain, “What are Core Linguistic Properties?,” Proceedings of the 9th Conference
of the Australasian Society for Cognitive Science, pp. 67-71, 2010.

[20] H. Aliane, Z. Alimazighi, and M. Cherif, “Al-Khalil: The Arabic Linguistic
Ontology Project,” in Proceedings of the Seventh Conference on International
Language Resources and Evaluation (LREC’10), 2010.

[21] M. Hahn, “Arabic Relativization Patterns: A Unified HPSG Analysis,” Proceedings
of HPSG 2012 Conference/Ellipsis Workshop, Daejeon, Korea, 2012.

[22] L. Dice, “Measures of the amount of ecologic association between species,”
Ecology, 1945.

[23] C. Manning, P. Raghavan, and H. Schiitze, Introduction to information retrieval, 1st
ed. Cambridge University Press, 2008.

[24] T. Hisamitsu, Y. Niwa, and S. Nishioka, “Term extraction using a new measure of
term representativeness,” Proceedings of the Second International Conference on
Language Recources and Evaluation (LREC 2000), pp. 13-20, 2000.

[25] K. T. Frantzi, S. Ananiadou, and J. Tsujii, “The C-value/NC-value Method of
Automatic Recognition for Multi-Word Terms,” in Proceedings of the Second

61

www.manaraa.com

European Conference on Research and Advanced Technology for Digital Libraries,
1998, pp. 585-604.

[26] L. Ahrenberg, “Term extraction: A Review,” Linkdping University, 2005.

[27] A. Nazarenko and H. Zargayouna, “Evaluating term extraction,” in International
Conference RANLP 2009, 2009, pp. 299-304.

[28] M. Attia, L. Tounsi, P. Pecina, and J. van Genabith, “Automatic extraction of arabic
multiword expressions,” 23rd International Conference on Computational
Linguistics Proceedings of the Workshop on Multiword Expressions: from Theory to
Applications (MWE 2010), no. August, pp. 18-26, 2010.

[29] M. Hong, “Hybrid filtering for extraction of term candidates from German technical
texts,” in International Conference on Terminology and Artificial Intelligence(TIA-
2001), 2001.

[30] W. Wong, “Determination of unithood and termhood for term recognition,” in
Handbook of research on text and web mining technologies, 2009.

[31] S. AlGahtani, W. Black, and J. Mcnaught, “Arabic part-of-speech tagging using
transformation-based learning,” in Proceedings of the Second International
Conference on Arabic Language Resources and Tools, 2009, no. 2001, pp. 66-70.

[32] D. Kurz and F. Xu, “Text mining for the extraction of domain relevant terms and
term collocations,” in Proceedings of the International Workshop on Computational
Approaches to Collocations, 2002.

[33] C. Nemallapudi, “Evaluating Term Extraction Methods for Domain Analysis,”
Virginia Polytechnic Institute and State University, 2010.

[34] M. Beseiso, A. R. A. R. Ahmad, and R. Ismail, “A Survey of Arabic language
Support in Semantic web,” International Journal of Computer Applications 1JCA,
vol. 9, no. 1, pp. 24-28, Nov. 2010.

[35] M. K. Saad and W. Ashour, “OSAC: Open Source Arabic Corpora,” International
Conference on Electrical and Computer Systems, vol. 18, 2010.

[36] M. Syiam, Z. Fayed, and M. Habib, “An intelligent system for Arabic text
categorization,” International Journal of Intelligent Computing and Information
Sciences, vol. 6, no. 1, pp. 1-19, 2006.

[37] M. K. Saad and W. Ashour, “Arabic Morphological Tools for Text Mining,”
International Conference on Electrical and Computer Systems, vol. 18, p. 19, 2010.

62

www.manaraa.com

[38] L. Lopes, P. Fernandes, and R. Vieira, “ExATOIp-an automatic tool for term
extraction from Portuguese language corpora,” Proceedings of the LTC 09, 20009.

[39] F. Sclano and P. Velardi, “Termextractor: a web application to learn the shared
terminology of emergent web communities,” Enterprise Interoperability 11, pp. 287—
290, 2007.

[40] E. Atlam, M. Fuketa, K. Morita, and J. Aoe, “Automatic building an extensive
Arabic FA terms dictionary,” Proceedings of World Academy of Science,
Engineering and Technology, vol. 44, pp. 719-725, 2010.

[41] L. Larkey, L. Ballesteros, and M. Connell, “Light stemming for Arabic information
retrieval,” Arabic Computational Morphology: Knowledge-based and empirical
method,, vol. 38, 2007.

[42] K. Al Khatib and A. Badarneh, “Automatic extraction of Arabic multi-word terms,”
in Computer Science and Information Technology (IMCSIT), Proceedings of the
2010 International Multiconference on, 2010, pp. 411-418.

[43] R. Al-shalabi and G. Kanaan, “Constructing an automatic lexicon for Arabic
language,” international journal of computing &information sciences, vol. 2, no. 2,
pp. 114-128, 2004.

[44] H. K. Al Ameed, S. O. Al Ketbi, A. A. Al-Kaabi, K. Al Shebli, N. Al Shamsi, N. H.

Al Nuaimi, and S. S. Al Mubhairi, “Arabic light stemmer: A new enhanced
approach,” in The Second International Conference on Innovations in Information
Technology (IIT°05), 2005, pp. 1-9.

[45] H. Traboulsi, “Arabic named entity extraction: A local grammar-based approach,”
in Computer Science and Information Technology, 2009. IMCSIT 09. International
Multiconference on, 2009, pp. 139-143.

[46] H. Traboulsi, “A local grammar for proper names,” University of Surrey, 2004.

[47] A. Al-Taani, “A rule-based approach for tagging non-vocalized Arabic words,”
Arab Journal of Information Technology (IAJIT), vol. 6, no. 3, pp. 320-328, 20009.

[48] S. Boulaknadel, B. Daille, and D. Aboutajdine, “A multi-word term extraction
program for Arabic language,” In Proceeding of the Sixth LREC, pp. 1485-1488,
2008.

[49] S. Khoja, “APT: Arabic part-of-speech tagger,” proceding of the Student Workshop
at NAACL, 2001.

[50] T. Naseem and B. Snyder, “Multilingual part-of-speech tagging: Two unsupervised
approaches,” Journal of Artificial Intelligence Research, vol. 36, pp. 1-45, 2009.

63

www.manaraa.com

[51] S. Mansour, K. Sima’an, and Y. Winter, “Smoothing a lexicon-based pos tagger for
Arabic and Hebrew,” Proceedings of the 2007 Workshop on Computational
Approaches to Semitic Languages: Common Issues and Resources, 2007.

[52] G. Kanaan, R. AL-SHALABI, and M. Sawalha, “Full automatic Arabic text tagging
system,” proceedings of the International Conference on Information Technology
and Natural Sciences, pp. 258-267, 2003.

[53] E. Atlam, “A New Weight Function for Constructing Field Association Terms using
Concurrent Words,” International Journal of Computer Science Issues, vol. 8, no. 4,
pp. 16-27, 2011.

[54] A. Abdelali, “Building a modern standard Arabic corpus,” In workshop on
computational modeling of lexical acquisition, 2005.

[55] M. Abbas and K. Smaili, “Comparison of topic identification methods for arabic
language,” Recent Advances in Natural Language Processing (RANLPO5), pp. 14—
17, 2005.

[56] L. Al-Sulaiti, “Designing and developing a corpus of contemporary Arabic,” The
University of Leeds, 2004.

[57] L. Lopes, R. Vieira, M. J. Finatto, and D. Martins, “Extracting compound terms
from domain corpora,” Journal of the Brazilian Computer Society, vol. 16, no. 4, pp.
247-259, Aug. 2010.

[58] M. Diab, K. Hacioglu, and D. Jurafsky, “Automatic tagging of Arabic text: From
raw text to base phrase chunks,” In Proceedings of HLT-NAACL 2004: Short Papers
(HLT-NAACL-Short '04), pp. 149-152, 2004.

[59] R. Basili, A. Moschitti, M. T. Pazienza, and F. M. Zanzotto, “A contrastive
approach to term extraction,” International Conference on Terminology and
Artificial Intelligence(T1A-2001), 2001.

[60] A. Hippisley and D. Cheng, “The head-modifier principle and multilingual term
extraction,” Natural Language, vol. 11, no. 2, pp. 129-157, Jun. 2005.

[61] R. Kohavi and F. Provost, “Special Issue on Applications of Machine Learning and
the Knowledge Discovery Process,” Machine Learning, vol. 30, no. 2/3, pp. 127—
271, 1998.

[62] C. Chen, A. Liaw, and L. Breiman, “Using random forest to learn imbalanced data,”
Clefornia, 2004.

64

www.manaraa.com

Appendices

The appendices list the flow charts and java API classes we developed for model:
Flowchart for the model main class
Flowchart for domain separation
Flowchart for result merging for a domain
Flowchart for binary search with insert
API documentation of the module
i. Class Modified Light Stemmer

ii. Class Start Term Candidate Extraction Process
iii. Class Start Ranking Process

iv. Class Terms Ranker

v. Class Term Distribution Process

vi. Class Testing Stage
vii. Class Classify Document

Tracking the rank for term ¢ swis s ‘
Tracking the rank for term dswae 48 48 agul &yl

moow>

F.
G.

65

www.manharaa.com

A. Flowchart for the model main class

public MainClassi)
hrows 10Exception

Loading the names of the

long startTime = domains from the corpus
System.currentTime.. - each folder
+ represents a domain.
ListOfDomains domains| ====5tart the process
= new ListOfD.. 11 Generating the term candidate for each domain

'

StartTermCandidateExtract| - -0@d the statistic

. files to
||:|nF'rnlcess.. statistics matrix.

Loadstatistics stat=
new LoadStatistics..

'

StantRankingProcess| 4) load the Saved
ranking =new St.. ranking results.

!

LoadRankresultsAndTerms
rankresult..

'

TermDistriputionProcess
distripute..

'

LoadDistriputedDomainiWoard 7 Start the testing

3) Startthe ranking
process depending on
term hood method.

5) Startterm
distribution depending
on the rank results.

G) load the distributed
domain waords into
domain word vector.

s domainWords . process for a document
TestingStage tester=|
new TestingStage.. ====Endthe process
| {

o

66

www.manharaa.com

B. Flowchart for domain separation

public CorpusSeparalio
(String..

UstOiDomains dom = new
ListOfDomains..

i<dom.domainListiength ?

Mo | Yas

(End) [int domParts=1..

J<domainFlles
fles.length 7

Yas Mo
j==domParis¥siz=2 ? i**

Yes

domPans+=1,|! No

Slring dimame
=saparatadDomain..

Idestination.exsts() 7

| destination m&aind; f) Mo

Fila dest=new File(
dimame+"F+dom..

| doﬂ.cromeNMllooﬂ No

String dimamet
=corpus+F+dom..

R

67

www.manharaa.com

C. Flowchart for result merging for a domain

public MergingTermitera
onResultsF ..
create the vector

ListOfDomains dom=new | composed of vectors
ListOfDomains.. containing the
statistic files

new 1

Yeg

String damain=
(String) dom.domain..

j=dom.domainList.length ?

Idom.domainList]j]
aethlame().contai..

o

new 1

Yes

M domain = (String)
U1 dom.domainList.

e

String filed
="TermsAndItteration..

68

www.manharaa.com

D. Flowchart for binary search with insert

| return middle;|

termvectar.elementAt
(middle).trim..

termvector.elementAt
(rmiddle).trima)..

public int
hinarySerchForlinsert

int middle = (left
+right) i 2;

termvector
insenElementAt
iterm,left);..

Mo

rtitermiyectar..

return binarySerchForlnse || return hinawSerchFcy{se

rtitermyector..

K_

69

www.manaraa.com

E. API documentation of the module

Class Summary

Class Description

The Class AADRTE is the Main Class of the model
AADRTE that calls all the sup classes to perform a complete
sequence of the model processes.

The Class ClassifyDocument is used to classify the

ClassifyDocument document within the Testing_corpus folder.

The Class ListOfDomains read the folders in the corpus
as a domain list.

ListOfFiles The Class ListOfFiles.

LoadDistriputedDomain\Word
S

ListOfDomains

The Class LoadDistriputedDomainWords.

The Class LoadRankresultsAndTerms for loading the
LoadRankresultsAndTerms rank results from rank files in the rankrResults
directory.

The Class LoadStatistics create the vector composed of

LoadStatistics vectors containing the statistic files.
LoadStemerFiles The Class LoadStemerFiles.
ModifiedLightStemmer The Class ModifiedLightStemmer.
?ianeLineFiIeToVectorReade The Class SingleLineFileToVectorReader.
SingleTokenFileReader The Class SingleTokenFileReader.
StartRankingProcess The Class StartRankingProcess.
i;a:’r(;(;ingandidateExtractio The Class StartTermCandidateExtractionProcess.
TermDistriputionProcess The Class TermDistriputionProcess.
TermindexRetreval The Class TermIndexRetreval.
TermsRanker The Class TermsRanker.

TestingStage The Class TestingStage.
VectorToFileWriter The Class VectorToFileWriter.
writeAllDataToOneFile The Class writeAllDataToOneFile.

70

www.manaraa.com

../../AADRTESys/doc/AADRTE/AADRTE.html
../../AADRTESys/doc/AADRTE/ClassifyDocument.html
../../AADRTESys/doc/AADRTE/ListOfDomains.html
../../AADRTESys/doc/AADRTE/ListOfFiles.html
../../AADRTESys/doc/AADRTE/LoadDistriputedDomainWords.html
../../AADRTESys/doc/AADRTE/LoadDistriputedDomainWords.html
../../AADRTESys/doc/AADRTE/LoadRankresultsAndTerms.html
../../AADRTESys/doc/AADRTE/LoadStatistics.html
../../AADRTESys/doc/AADRTE/LoadStemerFiles.html
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html
../../AADRTESys/doc/AADRTE/SingleLineFileToVectorReader.html
../../AADRTESys/doc/AADRTE/SingleLineFileToVectorReader.html
../../AADRTESys/doc/AADRTE/SingleTokenFileReader.html
../../AADRTESys/doc/AADRTE/StartRankingProcess.html
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/TermsRanker.html
../../AADRTESys/doc/AADRTE/TestingStage.html
../../AADRTESys/doc/AADRTE/VectorToFileWriter.html
../../AADRTESys/doc/AADRTE/writeAllDataToOneFile.html

I. Class ModifiedLightStemmer

java.lang.Object
L AADRTE.ModifiedLightStemmer

public class ModifiedLightStemmer
extends Object

The Class ModifiedLightStemmer. This class is a modification of khoja stemmer also we
modified the stemmer files to accept the Arabic letters only. It is also loads the stemmer
files within StemmerFiles folder. To be used in the stemming process

Field Summary

Modifier and Type Field and Description

(package
private)
LoadStemerFiles

stemerFiles
The stemmer files.

Constructor Summary

Constructor and Description

ModifiedLightStemmer ()
Instantiates a new modified light stemmer.

Method Summary

Modifier and Type Method and Description

private [checkDefiniteArticle (String word)
string Check definite article.

String | formatTheWord (String currentWord)
Format the word.

private removeNonLetter (String currentWord, StringBuffer
boolean modifiedWord)

Removes the non Arabic letter.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Field Detall
stemerkFiles

LoadStemerFiles stemerFiles
The stemmer files. This variable calls the load stemmer files class to load the
stemmer files to a vector from StemmerFiles folder.

71

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
../../AADRTESys/doc/AADRTE/LoadStemerFiles.html
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html#stemerFiles
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html#ModifiedLightStemmer()
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html#checkDefiniteArticle(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html#formatTheWord(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html#removeNonLetter(java.lang.String, java.lang.StringBuffer)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/StringBuffer.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
../../AADRTESys/doc/AADRTE/LoadStemerFiles.html

Constructor Detail
ModifiedLightStemmer

public ModifiedLightStemmer ()
Instantiates a new modified light stemmer.

Method Detail
checkDefiniteArticle

private String checkDefiniteArticle (String word)
Check definite article. This method return the word removing the definite article
from it.
Parameters:
word - IS the original word to be checked.
Returns:
the string contains the word without definite article.

formatTheWord

public String formatTheWord (String currentWord)
throws IOException

Format the word. this method apply all the preprocessing steps on the word
Parameters:

currentWord - the current word

Returns:

the string returns the preprocessed word.

Throws:

ToException - Signals that an I/O exception has occurred.

removeNonLetter

private boolean removeNonLetter (String currentWord,
StringBuffer modifiedWord)

Removes the non-Arabic letter.
Parameters:

currentWord - the current word
modifiedWord - the modified word
Returns:

True, if successful

72

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/StringBuffer.html?is-external=true

ii. Class StartTermCandidateExtractionProcess

java.lang.Object
L—AADRTE.StartTermCandidateExtractionProcess

public class StartTermCandidateExtractionProcess

extends Object

The Class StartTermCandidateExtractionProcess. In this class we extract the candidate
terms for the corpus and counting the iteration for each term. Also we count the number of
the document the terms appear in. all the previous statistics are saved to files.

Field Summary

Modifier and Type
(package private) int

(package private)
Vector<Vector<String>>

(package private)
BufferedWriter

(package private)

FileWriter

(package private)
Vector<Vector<String>>

(package private)
ModifiedLightStemmer

(package private)
Vector<Vector<String>>

(package private) int

(package private)
TermIndexRetreval

(package private)
Vector<Vector<String>>

(package private)
VectorToFileWriter

Field and Description

corpusNumberOfFiles
The corpus number of files.

docIteration
The document iteration Vector.

fileBuffer
The file buffer.

fileWriter
The file writer.

stemedfilevector
The stemmed file vector.

stemer
instantiate The stemmer.

termCandidate
The term candidate Vector.

termCandidateOccurance
The term candidate occurrence.

termIndex
instantiate The term index.

termlteration
The term iteration Vector.

vectorFileWriter
instantiate The vector file writer.

Constructor Summary

Constructor and Description

int maxTokens)

StartTermCandidateExtractionProcess (String corpus,
Instantiates a new start term candidate extraction process.

73

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#corpusNumberOfFiles
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#docIteration
http://download.oracle.com/javase/7/docs/api/java/io/BufferedWriter.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#fileBuffer
http://download.oracle.com/javase/7/docs/api/java/io/FileWriter.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#fileWriter
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#stemedfilevector
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#stemer
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#termCandidate
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#termCandidateOccurance
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#termIndex
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#termIteration
../../AADRTESys/doc/AADRTE/VectorToFileWriter.html
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#vectorFileWriter
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#StartTermCandidateExtractionProcess(java.lang.String, int)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

Method Summary

Modifier and Type Method and Description

private void |UpdateDocItteration (int vectorIndex)
Update doc iteration.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Field Detall

termCandidate

Vector<Vector<String>> termCandidate
The term candidate Vector.

doclteration
Vector<Vector<String>> docIteration
The document iteration Vector.

termlteration
Vector<Vector<String>> termIteration
The term iteration Vector.

stemedfilevector
Vector<Vector<String>> stemedfilevector
The stemmed file vector.

corpusNumberOfFiles
int corpusNumberOfFiles
The corpus number of files.

termCandidateOccurance

int termCandidateOccurance
The term candidate occurrence.

fileWriter

FileWriter fileWriter
The file writer.

fileBuffer
BufferedWriter fileBuffer
The file buffer.

stemer

ModifiedLightStemmer stemer

74

www.manharaa.com

../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#UpdateDocItteration(int)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/FileWriter.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/BufferedWriter.html?is-external=true
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html

instantiate The stemmer.

termIndex
TermIndexRetreval termIndex
instantiate The term index.

vectorFileWriter
VectorToFileWriter wvectorFileWriter
instantiate The vector file writer.

Constructor Detail
StartTermCandidateExtractionProcess

public StartTermCandidateExtractionProcess (String corpus,
int maxTokens)
throws IOException

Instantiates a new start term candidate extraction process.
Parameters:

corpus - the folder name of the corpus

maxTokens - the max tokens in the term

Throws:

IOException - Signals that an 1/0 exception has occurred.

Method Detail
UpdateDocltteration

private void UpdateDocItteration (int vectorIndex)

Update doc iteration. this method increase the doc iteration counter for a term

Parameters:
vectorIndex - the vector index of the term.

75

www.manaraa.com

../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/VectorToFileWriter.html
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

li. Class StartRankingProcess

java.lang.Object
L AADRTE.StartRankingProcess

public class StartRankingProcess
extends Object

The Class StartRankingProcess. This class starts the ranking process by calling the
ListOfDomains class that reads the list of domains then starts LoadStatistics class to read
the data stored by the previous component then start ranking each candidate term in the list
for all the domains by calling the TermRanker class.

Field Summary

Modifier and Type Field and Description

(package private) rankVector
Vector<Vector<String>> The rank vector Is the vector that will contain the rank values
for the candidate term matrix.

Constructor Summary

Constructor and Description

StartRankingProcess (String corpus, Vector<Vector<String>> termCandidate,
Vector<Vector<String>> docIteration, Vector<Vector<String>>
termIteration, int maxTermLength, int courpusFiles, int
totalCandidateTermOcurance)

Instantiates a new start ranking process.

Method Summary

Modifier and Type Method and Description

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Field Detail
rankVector

Vector<Vector<String>> rankVector
The rank vector Is the vector that will contain the rank values for the candidate
term matrix.

Constructor Detail
StartRankingProcess

public StartRankingProcess (String corpus,
Vector<Vector<String>> termCandidate,
Vector<Vector<String>> doclteration,

76

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/StartRankingProcess.html#rankVector
../../AADRTESys/doc/AADRTE/StartRankingProcess.html#StartRankingProcess(java.lang.String, java.util.Vector, java.util.Vector, java.util.Vector, int, int, int)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

Vector<Vector<String>> termlIteration,
int maxTermLength,

int courpusFiles,

int totalCandidateTermOcurance)
throws IOException

Instantiates a new start ranking process.

Parameters:

corpus - the corpus

termCandidate - contains the term candidates
docIteration - contains the doc iteration
termIteration - contains the term iteration
maxTermLength-iSthelﬂaXtEHH|engﬂ1

courpusFiles - IS the number of corpus files
totalCandidateTermOcurance - i$ the total number of candidate term occurrence
Throws:

IOException - Signals that an 1/0 exception has occurred.

77

www.manharaa.com

http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

Iv.
java.lang.Object
L—AADRTE.TermsRanker

Class TermsRanker

public class TermsRanker

extends Object
The Class TermsRanker.

This class ranks a term by calling TermIndexRetreval to retrieve the index of the term to be
used for calling the statistics of the term for completing the rank process.

Field Summary
Modifier and Type

(package private)
double

(package private)
double

(package private)
Vector<Vector<String>>

(package private)

String

(package private) File

Field and Description

ACDWa
The ACDwa is the average contextual discriminative weight
of term a.

docFreqA
The document frequency of term a is number of documents

the term a appear in.

docIter
The dociter is the document iteration of term a.

domain
The domain name.

domainList

[]

(package private)
double

(package private)
double

(package private)
TermIndexRetreval

(package private)
double

(package private) int

(package private)
double

(package private)
double

The domain list.

DWa
The Dwa is the discriminative weight of term a.

Ftc
The Ftc is frequency summation of all candidate terms within
the corpus.

index
The index is the calling for term index retrieval class.

M
The m is number of documents in the corpus.

maxToken
The max token.

TermFregAD
The Termfregad is frequency of term a over the target domain

d.

TermFregADnot
The Termfregadnot frequency of term a over the rest of

78

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#ACDWa
../../AADRTESys/doc/AADRTE/TermsRanker.html#docFreqA
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#docIter
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#domain
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#domainList
../../AADRTESys/doc/AADRTE/TermsRanker.html#DWa
../../AADRTESys/doc/AADRTE/TermsRanker.html#Ftc
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/TermsRanker.html#index
../../AADRTESys/doc/AADRTE/TermsRanker.html#M
../../AADRTESys/doc/AADRTE/TermsRanker.html#maxToken
../../AADRTESys/doc/AADRTE/TermsRanker.html#TermFreqAD
../../AADRTESys/doc/AADRTE/TermsRanker.html#TermFreqADnot

corpus.

(package private) |termlIter
Vector<Vector<sString>> The termiter is the term iteration in corpus.

(package private) int | termLength
The term length.

(package private) |terms
Vector<Vector<String>> The terms is the terms vector.

Constructor Summary

Constructor and Description

TermsRanker (File [] domList, int courpusFiles, int
totalCandidateTermOcurance)

Instantiates a new terms ranker.

Method Summary

Modifier and Type Method and Description

private |ACC(String a)
double |Acc is a method to calculate the adjusted contextual contribution.

private |[ACDW(String a)
double |Acdw is a method to calculate the average contextual discriminative
weight of term a .

private int documentFrequency (String a)
Document frequency is a method to calculate the document frequencies of
terma.

private int domainNotTermFrequency (String a)
Domain not term frequency.

private int domainTermFrequency (String a)
Domain term frequency.

private |DP(String a)

double |Dp is a method to calculate the domain prevalence for term a.
private [DPh(String h)

double |Dph is a method to calculate the domain prevalence for term header h .
private |DT (String a)

double Dt is a method to calculate the domain tendency for term a.
private |[DW(String a)

double Dw is a method to calculate the discriminative weight for term a.
private |log2 (double num)

double LOgZ.
private |[MF(String a)

double |Mf is a method to calculate the modifier factor for term a.
private |[NGD (String a, String c)

double |Ngd is a method to calculate the normalized google distance between

79

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#termIter
../../AADRTESys/doc/AADRTE/TermsRanker.html#termLength
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#terms
../../AADRTESys/doc/AADRTE/TermsRanker.html#TermsRanker(java.io.File[], int, int)
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#ACC(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#ACDW(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#documentFrequency(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#domainNotTermFrequency(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#domainTermFrequency(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#DP(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#DPh(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#DT(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#DW(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#log2(double)
../../AADRTESys/doc/AADRTE/TermsRanker.html#MF(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#NGD(java.lang.String, java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

term a and term c .

double [rank (String a, String domainl, Vector<Vector<String>>
termCandidate, Vector<Vector<String>> docIteration,
Vector<Vector<String>> termlteration)

Rank is a method to calculate the total rank for term a.

private |sim(String a, String c)
double |Sim is a method to calculate the similarity between term a and termc .

private |TH(String a)
double | Th is a method to calculate the termhood for term a.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Field Detalil

double M
The m is number of documents in the corpus.

double Ftc
The Ftc is frequency summation of all candidate terms within the corpus.

String domain
The domain name.

double docFregA
The document frequency of term a is number of documents the term a appear in.

double TermFregAD
The Termfregad is frequency of term a over the target domain d.

double TermFregADnot
The Termfregadnot frequency of term a over the rest of corpus.

double DWa
The Dwa is the discriminative weight of term a.

double ACDWa
The ACDwa is the average contextual discriminative weight of term a.

int termLength
The term length.

Vector<Vector<String>> terms
The terms is the terms vector.

Vector<Vector<String>> docIlter
The dociter is the document iteration of term a.

80

www.manharaa.com

../../AADRTESys/doc/AADRTE/TermsRanker.html#rank(java.lang.String, java.lang.String, java.util.Vector, java.util.Vector, java.util.Vector)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#sim(java.lang.String, java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#TH(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

Vector<Vector<String>> termIter
The termiter is the term iteration in corpus.

File [] domainList
The domain list.

int maxToken
The max token.

TermIndexRetreval index
The index is the calling for term index retrieval class.

Constructor Detalil
TermsRanker

public TermsRanker (File [] domList,
int courpusFiles,
int totalCandidateTermOcurance)

Instantiates a new terms ranker.

Parameters:

domList - the domain list

courpusFiles - the corpus files

totalCandidateTermOcurance - the total candidate term occurrence

Method Detail
ACC

private double ACC(String a)
Acc is a method to calculate the adjusted contextual contribution.
Parameters:
a - is the term to be evaluated.
Returns:
the double

ACDW
private double ACDW(String a)
Acdw is a method to calculate the average contextual discriminative weight of term
a.
Parameters:
a - Is the term to be evaluated.
Returns:
the double

documentFrequency
private int documentFrequency (String a)
Document frequency is a method to calculate the document frequencies of term a .
Parameters:
a - is the term to be evaluated.
Returns:

81

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

the int

domainNotTermFrequency
private int domainNotTermFrequency (String a)
Domain not term frequency.
Parameters:
a-theterma
Returns:
the int

domainTermFrequency
private int domainTermFrequency (String a)
Domain term frequency.
Parameters:
a-theterma
Returns:
the int

DP
private double DP(String a)
Dp is a method to calculate the domain prevalence for term a.
Parameters:
a-theterma
Returns:
the double

DPh
private double DPh(String h)
Dph is a method to calculate the domain prevalence for term header h .
Parameters:
h - the term header h
Returns:
the double

DT
private double DT (String a)
Dt is a method to calculate the domain tendency for term a.
Parameters:
a-theterma
Returns:
the double

DW

private double DW(String a)
Dw is a method to calculate the discriminative weight for term a.

82

www.manharaa.com

http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

Parameters:
a-theterma
Returns:

the double

log2
private double log2 (double num)
Log2.
Parameters:
num - the num
Returns:
the double

MF
private double MF(String a)
Mf is a method to calculate the modifier factor for term a.
Parameters:
a-theterma
Returns:
the double

NGD

private double NGD (String a,
String c)

Ngd is a method to calculate the normalized google distance between term a and
termc.
Parameters:
a - the term a
c-thetermc
Returns:
the double

rank

public double rank(String a,
String domainl,
Vector<Vector<String>> termCandidate,
Vector<Vector<String>> doclteration,
Vector<Vector<String>> termlIteration)

Rank is a method to calculate the total rank for term a.
Parameters:

a -theterm a

domainl - is the term domain name

termCandidate - IS the term candidate
docIteration - is the document iteration
termIteration - IS the term iteration

Returns:

83

www.manharaa.com

http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

sim
private double sim(String a,
String c)

Sim is a method to calculate the similarity between term a and term ¢ .
Parameters:
a-theterma
c-thetermc
Returns:
the double

TH

private double TH(String a)

Th is a method to calculate the termhood for term a.
Parameters:

a -theterma

Returns:

the double

84

www.manharaa.com

http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

V.
java.lang.Object

Class TermDistriputionProcess

L AADRTE. TermDistriputionProcess

public class TermDistriputionProcess

extends Object

The Class TermDistriputionProcess. a simple distribution process for distributing the terms
over the domains depending on there rank value.

Field Summary
Modifier and Type

(package private)
Vector<Vector<String>>

(package private)
TermIndexRetreval

(package private) int

(package private) int

(package private)
static
Vector<Vector<String>>

(package private)
static
Vector<Vector<String>>

(package private)
VectorToFileWriter

Field and Description

domainWords
The domain words.

index
instantiate The index retrievers.

maxtoken
The maxtoken.

minRank
The minrank is the minimum rank value that could be
accepted for the term to be distributed.

rankingVector
The ranking vector.

termsVector
The terms vector.

writer
instantiate The vector to file writer.

Constructor Summary

Constructor and Description

TermDistriputionProcess (Vector<Vector<String>> rankVector,

Vector<Vector<String>>

termCandidate)

Instantiates a new term distribution process.

Method Summary

Modifier and Type

private void |distriputeTheVector (int i,

Method and Description

Vector<String> x)

Distribute the vector.

void startDistripution (File

[] domainList, int maxtokens)

Start distribution.

85

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#domainWords
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#index
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#maxtoken
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#minRank
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#rankingVector
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#termsVector
../../AADRTESys/doc/AADRTE/VectorToFileWriter.html
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#writer
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#TermDistriputionProcess(java.util.Vector, java.util.Vector)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#distriputeTheVector(int, java.util.Vector)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#startDistripution(java.io.File[], int)
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Field Detall

rankingVector

static Vector<Vector<String>> rankingVector
The ranking vector.

termsVector
static Vector<Vector<String>> termsVector
The terms vector.

domainWords
Vector<Vector<String>> domainWords
The domain words.

maxtoken

int maxtoken
The maxtoken.

minRank

int minRank
The minrank is the minimum rank value that could be accepted for the term to be
distributed.

writer
VectorToFileWriter writer
instantiate The vector to file writer.

index
TermIndexRetreval index
instantiate The index retrievers.

Constructor Detail
TermDistriputionProcess

public TermDistriputionProcess (Vector<Vector<String>> rankVector,
Vector<Vector<String>> termCandidate)

Instantiates a new term distribution process.
Parameters:

rankVector - the rank vector
termCandidate - the term candidate

Method Detail
distripute TheVector

86

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/VectorToFileWriter.html
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

private void distriputeTheVector (int i,
Vector<String> x)
Distribute the vector. This class distributes the candidate terms over the domain

depending on there rank value for the domains and assign the term to the domain
with higher rank value.

Parameters:

i - is the number of the vector to be distributed

x - IS the vector contains the distributed terms

startDistripution

public void startDistripution(File [] domainList,
int maxtokens)
throws IOException

Start distribution.

Parameters:

domainList - the domain list

maxtokens - the max tokens

Throws:

ToException - Signals that an I/O exception has occurred.

87

www.manharaa.com

http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

vi. Class TestingStage

java.lang.Object
L AADRTE.TestingStage

public class TestingStage
extends Object

The Class TestingStage.

Constructor Summary

Constructor and Description

TestingStage (Vector<Vector<String>> domainWords, int maximumTermLength,
String testingCorpus)
Instantiates a new testing stage.

Method Summary

Modifier and Type Method and Description

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail
TestingStage

public TestingStage (Vector<Vector<String>> domainWords,

int maximumTermLength,

String testingCorpus)

throws IOException
Instantiates a new testing stage.
Parameters:
domainWords - IS the domain words matrix
maximumTermLength - IS the maximum term length
testingCorpus - IS the folder name for the testing corpus
Throws:
ToException - Signals that an I/O exception has occurred.

88

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
../../AADRTESys/doc/AADRTE/TestingStage.html#TestingStage(java.util.Vector, int, java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

vii. Class ClassifyDocument

java.lang.Object
L AADRTE.ClassifyDocument

public class ClassifyDocument
extends Object

The Class ClassifyDocument is used to classify the document within the Testing_corpus
folder. These document should be butted in folders represents there domain.

The classification Process begins with loading the Modified light stemmer class which
loads the stemmer files that contains the stop word and other preprocessing files from the
StemmerFiles folder.

Then it loads the distributed domain word matrix from the DistriputedDomainTerms
folder. Each document represent a domain.

After that the classifier compute the binary distance between the document vector and the
domain vectors and give the document the domain with high distance.

Field Summary

Modifier and Type Field and Description
(package private) int |dom

(package private) int |domainsNumber

private

\ domainTerms
Vector<Vector<String>> |—————

(package private) int domRankMax

(package private)

index
TermIndexRetreval |[——

(package private) int maxToken

private Vector<String> |stemedFileVector

private

ModifiedLightStemmer Stemmer

Constructor Summary

Constructor and Description

ClassifyDocument (Vector<Vector<String>> domainwords, int maxTerm)
Instantiates a new classify document.

Method Summary

Modifier and Type Method and Description

int |classify (String fileName)

Classify method.

Methods inherited from class java.lang.Object

89

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#dom
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#domainsNumber
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#domainTerms
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#domRankMax
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#index
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#maxToken
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#stemedFileVector
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#stemmer
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#ClassifyDocument(java.util.Vector, int)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#classify(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true

clone, equals, finalize, getClass, hashCode, notify, notifyAll,

toString,

wait, wait, wait

Field Detalil

stemmer

private ModifiedLightStemmer stemmer

index

TermIndexRetreval index

domainTerms

private Vector<Vector<String>> domainTerms

stemedFileVector

private Vector<String> stemedFileVector

maxToken

int maxToken

domainsNumber

int domainsNumber

dom

int dom

domRankMax

int domRankMax

Constructor Detail

ClassifyDocument

public ClassifyDocument (Vector<Vector<String>> domainwords,
int maxTerm)

Instantiates a new classify document.

Parameters:

domainwords - IS the vectors of domain term matrix .
maxTerm - IS the maximum number of words in the term.

Method Detail

classify

public int classify(String fileName)
throws IOException

Classify method.
Parameters:rilename - is the name of the file to be classified

Returns:

90

www.manharaa.com

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

This method returners the document domain as an integer value depending on the

number of domains within the corpus folder.
Throws: 10Exception - Signals that an I/O exception has occurred.

F. An Example of ranking the term ¢l s

Start The ranking process for ¢silasn as one word term.

Corpus Files : 17759

Total Candidate Term Occurrence :22702550
Document Frequency of (uslasn) is: 1
Domain Term Frequency of (usdag) is =1

Domain Not Term Frequency of (osilaw) is =

1
1

Domain Term Frequency of (osilas) is
Domain Term Frequency of (us«iss) is

Domain Not Term Frequency of (usilaw) is =

DP(0smia 1) is:40.61552195880243
Domain Term Frequency of (oswilag) is =1

Domain Not Term Frequency of (usilaw) is =

DT (o2) 1i5:1.5849625007211563
DW(osila) is:64.37407925191854
Domain Term Frequency of (usilas) is
Domain Term Frequency of (osilas) is

1
1

Domain Not Term Frequency of (usilaw) is =

DP (0swil) i5:40.61552195880243
Domain Term Frequency of (usias) is =1

Domain Not Term Frequency of (usilaw) is =

DT(oswasy) is:1.5849625007211563
DW(osila) is:64.37407925191854
ACDW(0sis) is :64.37407925191854
Acc(ussws) is :64.37407925191854

The rank of term(us«ilas) is:128.7481585038371

ranking sl=®l | (swilss Rank value=128
End of the Experiment

91

www.manaraa.com

http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

G. An Example of ranking the term 4sais 4S & agul 7 sy

Start The ranking process for 4see 4)& agul 7 ks as four words term.
Corpus Files: 17759

Total Candidate Term Occurrence: 22702550

Document Frequency of (zok: aenl 48,3 daar) is: 1
Domain Term Frequency of (g aesl 48,8 daex) is = 1
Domain Not Term Frequency of (zk: sl 3,8 4sen) is = @
Domain Term Frequency of (z_ ki senl 4S8 daen) is = 1
Domain Term Frequency of (zuk) is = 42

Domain Term Frequency of (zuk) is = 42

Domain Not Term Frequency of (gzuk:) is = 193
DP(zsk:) is:45.35437395692971

Domain Term Frequency of (z_k) is = 42

Domain Not Term Frequency of (z_k:) is = 193
Domain Term Frequency of (ae~l) is = 5094

Domain Not Term Frequency of (sel) is = 2798
Domain Term Frequency of (35,3) is = 4568

Domain Not Term Frequency of (45,3) is = 3018
Domain Term Frequency of (issx) is = 8

Domain Not Term Frequency of (isx) is =5

MF (z ok pend 45,8 4aen) i5:1.386698584277142

DP(z b pend 4S58 3nen) i5:150.810458492347

Domain Term Frequency of (zoks senl 4558 daax) is = 1
Domain Not Term Frequency of (zh: senl 4S8 daex) is = @
DT (z b aeml 4S8 dasd) i5:1.5849625007211563

DW(z sk penl 48,8 daeda) 15:239.02892142693446

Domain Term Frequency of (g) is = 42

Domain Term Frequency of (g) is = 42

Domain Not Term Frequency of (zuok) is = 193

DP(z .k) 1s:45.35437395692971

Domain Term Frequency of (g) is = 42

Domain Not Term Frequency of (zuok) is = 193
DT(zok) is:0.0

DW(z ok) is:0.0

Document Frequency of (z_k:) is: 198

Document Frequency of (zok: aenl 48,3 dae) is: 1
Document Frequency of (z_k: aenl 38,8 daen) is: 1
(Math.max(0©.0,5.288267030694535)- 0.0)/(9.784647708654596-Math.min(0.0,
5.288267030694535))

NGD (zok penl 4S50 daeta, = sy)=0.5404657569855092
Sim(zok penl A58 daede 7 sy) 15:0.45953424301449075
Domain Term Frequency of (sl) is = 5094

Domain Term Frequency of (sl) is = 5094

Domain Not Term Frequency of (sl) is = 2798
DP(ae~l) i5:68.02777610376341

Domain Term Frequency of (sl) is = 5094

Domain Not Term Frequency of (sl) is = 2798
DT(ae=l) is:1.0

DW(pewl) i5:68.02777610376341

Document Frequency of (sl) is: 2244

92

www.manaraa.com

Document Frequency of (zok: aenl 48,8 daem) is: 1
Document Frequency of (g aesl 48,8 dsex) dis: 1
(Math.max(0.0,7.716015266642587)- 0.0)/(9.784647708654596-Math.min(0.0,
7.716015266642587))

NGD (7 sb ael 4S5 dnede, gl)=0.7885838607983517
Sim(zok penl 4858 daare el) 15:0.21141613920164826
Domain Term Frequency of (&) is = 4568

Domain Term Frequency of (3,4) is = 4568

Domain Not Term Frequency of (3,4) is = 3018
DP(%) is5:67.49336833015924

Domain Term Frequency of (3,4) is = 4568

Domain Not Term Frequency of (3,4) is = 3018
DT(3S %) is:1.0

DW(4S%) 1s5:67.49336833015924

Document Frequency of (4,4) is: 1585

Document Frequency of (zok: aenl 48,3 dxer) is: 1
Document Frequency of (zuk: aesl 38,8 daen) is: 1
(Math.max(0.0,7.368339686311381)- 0.0)/(9.784647708654596-Math.min(0.0,
7.368339686311381))

NGD (zoks penl 4853 daete, 48,3)=0.7530510965452571
Sim(z by penl A58 daede 3853) i5:0.24694890345474285
Domain Term Frequency of (i) is = 8

Domain Term Frequency of (4<%) is = 8

Domain Not Term Frequency of (i) is =5
DP(4sex) 15:41.54344097198535

Domain Term Frequency of (is«x) is = 8
Domain Not Term Frequency of (i) is =5

DT(%s~x) is:1.@

DW(4>sx) i5:41.54344097198535

Document Frequency of (4ssx) is: 12

Document Frequency of (z_k: aenl 38,8 daen) is: 1

Document Frequency of (z_k: aenl 3S,8 daen) is: 1
(Math.max(0.0,2.4849066497880004)- 0.0)/(9.784647708654596-Math.min(0.0,
2.4849066497880004))

NGD(z A aenl 4S8 dnare daere)=0.2539597463064594
Sim(z kb aenl 4858 daede,daer) i5:0.7460402536935407

ACDW (ke penl 3858 daen) is :15.510665580993571
Acc(z b el 358 daen) is :-1.81562164476214E-5

The rank of term(z_t: aesl 4S54 4se) 15:239.02890327071802

ranking sbasl | & sl sl 45 53 43 Rank value is : 239
End of the Experiment

93

www.manaraa.com

