
www.manaraa.com

www.manaraa.com

II

 بسم الله الرحمن الرحيم

Islamic University of Gaza

Deanery of Post Graduate Studies

Faculty of Information Technology

Automatic Arabic Domain-Relevant

Term Extraction

By:

Manar S. Fayyad

Supervised By:

Dr. Rebhi Baraka

A Thesis Submitted as Partial Fulfillment of the Requirements for

the Degree of Master in Information Technology

Sep. 2012 - Shawwal 1433 H

www.manaraa.com

i

Dedication

This work is dedicated to my mother and father

To my family

To my friends

To my professors and teachers

To term extraction researchers

To Muslims

www.manaraa.com

ii

Acknowledgement

First of all thanks to Allah for the gift of Islam and for guiding

me in accomplishing this research.

I would like to thank my parents for their support. I extend my

thanks to all my family members.

I am very thankful to my supervisor, Dr. Rebhi Baraka, for his

enormous support, valuable guide, and assistance throughout the

work of this research.

Special thanks to all members of IT faculty at the Islamic

university of Gaza for passing their knowledge to me.

Also I would like to thank every natural language processing

teacher, researcher or doctor that his knowledge passed to me

through his writings which guides me through my work.

www.manaraa.com

iii

Abstract

Term extraction from text corpus is an important step in knowledge acquisition and it

is the first step in many Natural Language Processing (NLP) methods and computer lingual

systems. In Arabic language there are some works in the field of term extraction and few of

them try to extract domain-relevant terms.

In this research a model for automatic Arabic domain-relevant term extraction from

text corpus was proposed. The proposed model uses a hybrid approach composed of

linguistic and statistical methods to extract terms relevant to specific domains depending

on prevalence and tendency term ranking mechanism.

In order to realize the proposed model a multi domain corpus separated into 10

domains (Economic, History, Education and family, Religious and Fatwa's, Sport, Health,

Astronomy, Low, Stories, and Cooking recipes) was used. Then this corpus preprocessed

by removing non Arabic letters, punctuations, diacritics, and stop words. Then a candidate

terms vector was extracted using a sliding window with variant length dropping the

windows that contain a stop word.

Candidate terms have been ranked using Termhood method as a statistical method that

measures the distributional behavior of candidate terms within the domain and across the

rest of the corpus.

Then Candidate terms have been distributed over the domains depending on the higher

rank result for the extracted terms constructing a domain term matrix. This matrix has been

used in a simple classifier that classifies the testing corpus. The final step gives us a

confusion matrix that indicates that the domain term matrix worked as a best classifier

achieving an accuracy rate of 100% for some domains and very good in others. The total

accuracy of the classifier was 95%. This is a highly accurate classifier.

Keywords: Preprocessing, Stemming, light stemming, Arabic Term Extraction, Terms,

Domain-Relevant Term Extraction.

www.manaraa.com

iv

 الملخص

النصوص يشكل خطوة هامة في عملية استخراج نم (Term extraction)المصطلحات استخراج إن
الطبيعية من الخطوات الأولى في كثير من عمليات معالجة اللغات وهي (Knowledge acquisition) المعرفة

(Natural language processing) اللغوية ونظم الكمبيوتر(Computer lingual systems) على مستوى اللغة
العربية هناك العديد من الأعمال التي تعالج مسألة استخراج المصطلحات ولكن القليل منها عالج المصطلحات المرتبطة

 .بمجال معين
مجال معين من مجموعة ب ةالمرتبط ةالعربي اتالمصطلح لاستخراجآليا نموذجاتم اقتراح في هذا البحث

يتكون من الأساليب اللغوية والإحصائية لاستخراج المصطلحات هجين لمقترح يستخدم نهجا عربية. النموذج نصوص
سنادها إلى هذا المجال اعتمادا على انتشار هذا المصطلح داخل المجال وخارجه ومدى ذات الصلة بمجال محدد وا

 .المجال ذاارتباطه به
وعة مستندات أو نصوص(عربيا مقسما إلى)مجم (Corpus)اً من أجل تحقيق النموذج المقترح استخدم مكنز

مرةعشرة مجالات هي)اقتصاد، تاريخ، تربية ، دين وفتاوى شرعية، رياضة، صحة، فلك، قانون، قصص، وأسرة وا
الحروف غير بإزالة (Light stemming) سطحيةمعالجة هذه المستندات معالجة لغوية تم وصفات واكلات(. ثم

مع الاحتفاظ بمكان الاستخدام()الشائعة (Stop words) الموقوفةركات التشكيل والكلمات العربية وعلامات الترقيم وح
الأخيرة فارغا لأنها تؤثر على استخراج المصطلحات المرشحة. من ثم قمنا باستخراج المصطلحات المرشحة باستخدام

كلمات بيك التي تحتوي على إسقاط الشباتم مختلفة حيث ل(وبأطواSliding window)المنزلق أسلوب الشباك
 . موقوفة

على معيار وزن محدد بناءً (Candidate terms) المرشحةتقييم كل مصطلح من المصطلحات تم بعد ذلك
يقيس مدى انتشار المصطلح داخل المجال المحدد وخارجه ومدى ارتباطه بهذا المجال وتتكرر هذه العملية لكل

 فرة لهذه التجربة.مصطلح مرشح على جميع المجالات المتو
مقارنة الأوزان المحسوبة لكل مصطلح وتخصيص المصطلح المرشح للمجال ذو الوزن الأكبر مع تم ومن ثم

إهمال المصطلحات ذات الأوزان مساوية أو اقل من الصفر وكررت هذه العملية لجميع المصطلحات المستخرجة من
على وأطلق ت لكل مجال تختلف عن قائمة المجالات الأخرى على قائمة من المصطلحاتم الحصول المكنز وهكذا فقد

 .(Domain term matrix) المجالاتمجموعة القوائم هذه بمصفوفة مصطلحات
استخدام هذه المصفوفة في عملية تصنيف بعض المستندات أو تم ولاختبار مدى فاعلية هذا النموذج

تصميم مصنف يعتمد على مصفوفة وقد تم محددة مسبقا النصوص وتحديد مجالاتها مع العلم بان مجالاتها كانت
المصنف وكانت النتائج ممتازة في لهذا (Confusion matrix) التشويشاستخراج مصفوفة وقد تم مصطلحات المجال

وقد بلغت وجيدة جدا في بعضها الآخر.في بعض المجالات % 011أغلب المجالات بحيث حققت نسبة دقة بلغت
 %. 59ية نسبة الدقة الكل

www.manaraa.com

v

Table of Contents

Dedication ... i
Acknowledgement .. ii

Abstract .. iii
 iv ... الملخص
Table of Contents ... v
List of Tables .. vii
List of Figures .. viii

List of Abbreviations .. ix
Transliteration of the Arabic terms within this thesis .. x

Chapter 1: Introduction .. 1
1.1 Problem statement ... 2
1.2 Objectives .. 2
1.3 Importance of the research .. 3

1.4 Scope and limitations of the research .. 3
1.5 Methodology .. 3

1.6 Thesis structure .. 4
Chapter 2: Background and related work .. 5

2.1 Background .. 5

2.1.1 Term definitions ... 5
2.1.2 Term characteristics .. 5

2.1.3 Term Extraction .. 7

2.2 Arabic language ... 12

2.3 Related Work ... 13
Chapter 3: Designing the Model of Term Extraction .. 19

1.3 The primitive model .. 19
3.2 Corpus selection stage ... 20
3.3 Preprocessing, term extraction, and iteration counting stage 21

3.3.1 Preprocessing .. 22
3.3.2 Candidate term extraction ... 25
3.3.3 Iteration counting .. 26

3.4 Term candidate ranking stage .. 30

3.4.1 How the ranking process work ... 34
3.5 Term Distribution stage ... 39

Chapter 4: Realization of the Model .. 42
4.1 Component diagram .. 42
4.2 Class diagrams ... 43
4.3 Tools used .. 46
4.4 Problems appeared during the implementation of the model 47

4.5 Solutions for the implementation problems ... 47
Chapter 5: Experiments and Results .. 48
5.1 Evaluation methods ... 48

5.2 Experimental design .. 50

www.manaraa.com

vi

5.2.1 The data .. 50

5.3 The classifier .. 52

5.4 Results and discussion ... 52
Chapter 6: Conclusion and Future Work ... 58
References .. 60
Appendices ... 65

A. Flowchart for the model main class ... 66

B. Flowchart for domain separation ... 67
C. Flowchart for result merging for a domain .. 68
D. Flowchart for binary search with insert ... 69
E. API documentation of the module ... 70

i. Class ModifiedLightStemmer... 71

ii. Class StartTermCandidateExtractionProcess ... 73

iii. Class StartRankingProcess ... 76
iv. Class TermsRanker ... 78

v. Class TermDistriputionProcess .. 85

vi. Class TestingStage .. 88
vii. Class ClassifyDocument ... 89

F. An Example of ranking the term 91 ... يوهانسون
G. An Example of ranking the term مدمجة شركة أسهم يطرح ... 92

www.manaraa.com

vii

List of Tables

Table 2.1: Term based NLP domains. ... 7

Table 2.2: Metric Summary and Abbreviations ... 10

Table 2.3: Patterns and Part Of Speech mapping. ... 14

Table 2.4: The number of candidate pairs in collocations. .. 17

Table 3.1: Results of preprocessing step ... 24

Table 3.2: Term Extraction with 1 to 4 words length .. 27

Table 3.3: The iteration matrix for economy domain .. 31

Table 3.4: Term ranking matrix for one domain ... 39

Table 3.5: Comparing rank results of candidate terms from the sample over the domains . 40

Table 3.6: Sample of Domain term matrix .. 41

Table 5.1: OSAc corpus web site sources. ... 51

Table 5.2: The number of documents to be classified for the domains 51

Table 5.3: Confusion matrix .. 48

Table 5.4: Number of term candidate for the domains .. 52

Table 5.5: Number of distributed terms over the domains .. 53

Table 5.6: The classifier confusion matrix for the domains .. 55

Table 5.7:Confution matrix for Economic domain .. 56

Table 5.8: Confution matrix for Sprot domain .. 56

Table 5.9: Confution matrix for Astronomy domain ... 57

www.manaraa.com

viii

List of Figures

Figure 2.1: The four modules of term extraction process .. 9

Figure 2.2: Metric Hierarchical Ordering .. 11

Figure 2.3: Local grammar rule for reporting verbs .. 14

Figure 2.4: Graphical model of bigram syntactic pattern .. 15

Figure 2.5: System outline of the FA Terms selection methodology 16

Figure 3.1: General model architecture ... 19

Figure 3.2: Preprocessing, term Extraction, Iteration counting Process. 22

Figure 3.3: The overall diagram of the preprocessing phase ... 23

Figure 3.4: Term candidate extraction and iteration counting ... 30

Figure 3.5: The flow chart of the ranking process ... 38

Figure 4.1: The model component diagram ... 42

Figure 4.2: The candidate term extraction class diagram .. 43

Figure 4.3: The term ranking class diagram .. 44

Figure 4.4: The term distribution class diagram .. 45

Figure 4.5: The classifier class diagram .. 46

Figure 5.1: Comparing candidate terms with distributed terms for one word length 53

Figure 5.2: Comparing candidate terms with distributed terms for four word length 54

Figure 5.3: Term candidate and domain terms over term size for economy domain 54

file:///E:/Dropbox/My%20Thesis/My%20thesis%20Automatic%20Domain%20Relevant%20Term%20Extraction18-9-2012%20modified%20.docx%23_Toc336025196
file:///E:/Dropbox/My%20Thesis/My%20thesis%20Automatic%20Domain%20Relevant%20Term%20Extraction18-9-2012%20modified%20.docx%23_Toc336025197
file:///E:/Dropbox/My%20Thesis/My%20thesis%20Automatic%20Domain%20Relevant%20Term%20Extraction18-9-2012%20modified%20.docx%23_Toc336025199

www.manaraa.com

ix

List of Abbreviations

ACC : Adjusted Contextual Contribution.

ACDW : Average Contextual Discriminative Weight.

ANLP : Arabic Natural Language Processing.

ATE : Automatic Term Extraction.

BMA : BuckWalter Morphological Analyzer.

DP : Domain Prevalence.

DT : Domain Tendency.

DW : Discriminative Weight.

FA : Field Association.

IDF : Inverse Document Frequency.

LLR : Log-Likelihood Ratio.

MF : Modifier Factor.

MWE : Multi Word Expression.

NGD : Normalized Google Distance.

NLP : Natural Language Processing.

OSAC : Open Source Arabic Corpora.

P : Precision.

PMI : Point wise Mutual Information.

POS : Part of speech.

POST : Part of Speech Tagging.

R : Recall.

TF : Term Frequency.

TF-IDF : Term Frequency Inverse Document Frequency.

TH : Termhood.

www.manaraa.com

x

Transliteration of the Arabic terms within this thesis

Arabic English phoneme Meaning

 ktba wrote كتب

 katib Writer كاتب

 ktab Book كتاب

 khat Line خط

 anabayb Pipes أنابيب

 ghaz Gas غاز

 ymr Passes يمر

 abar Across عبر

 torkya Turkey تركيا

 eela To إلى

 athad Union اتحاد

 awrwbai European أوروبي

 wmn It is ومن

 muntader Expected منتظر

 an That أن

مليكت yktml Completed

 mshrwa Project مشروع

 nabawkw Nabucco نابوكو

 baalgh about بالغ

 toloh Length طوله

 kylwmtra Km كيلومترا

 fia In في

 am Year عام

 batklfh Cost بتكلفة

 tqdr Estimated تقدر

 mlyarat Billion مليارات

 ywrw Euro يورو

 yatrah Raises يطرح

همأس ashm Stocks

 shrkh Company شركة

 mdmjh Merged مدمجة

www.manaraa.com

1

1 Chapter 1: Introduction

This chapter talks about automatic Arabic domain relevant term extraction from text

corpus which is very important for natural language processing studies and applications.

Firstly, we define the problem of the study and the main objective to solve this problem;

and to recognize the specific objectives related to this main objective. Secondly we

mention the scope and limitation of doing this research. Thirdly, the proposed

methodology to achieve our objectives is clarified. Finally, we summarized the content of

this research in the final paragraph.

The term is albeit provisionally definition by Sager as a constructs of human

cognition processes which assist in the classification of objects by way of systematic or

arbitrary abstraction [1]. He acknowledges that there exists considerable divergence of

opinion in this matter and chooses to leave it more or less undefined and considered as an

“axiomatic primitive, like word or sentence” [1].

Term extraction is a method that scans text to extract terminological units. It contains

in order to enrich lexicographic resources. Software solutions can automate the process by

scanning texts for terminological units, extracting word combinations to fulfill preset

criteria and generating reports for filtering are extremely helpful because they automated a

task that can otherwise be a time consuming, and costly undertaking [2].

The resulting terms maybe used in many NLP tasks such as information retrieval, text

mining, document summarization etc… [3]. Any corpus participate in the term extraction

process need to be preprocessed like removing no letters, removing stop word, etc… [4].

The term extraction has two main stages: Firstly, extraction of candidate terms. Secondly,

validating and ranking of these terms [5].

There are several approaches for extracting candidate terms like linguistic filtering

that uses linguistic patterns like (N ADJ, N N, and N PREP N) for filtering the tagged

corpus [6]. Also the noun phrase which take any sequence of words following a noun can

be used [5]. Other researchers uses a local grammar approach that uses a role for

extracting a term like the telling role in [7]. The n-gram sliding window method could be

used for extracting candidate term with n words length [8][9].

There are several ranking ways for validating the extracted term. They are classified

into two categories unithood and termhood [10]. First, the unithood is the degree of

strength or stability of syntagmatic combinations and collocations [11]. It is calculated

only for complex terms. Some of the unithood measures are T-Score, NGD (Normalized

Google Distance), mutual information, and log-likelihood. They simply relies on the

www.manaraa.com

2

occurrence and co-occurrence frequencies from domain corpora as the source of evidence

[12]. Second, the termhood measures the degree to which these stable lexical units are

related to domain-specific concepts like C-value, NC-value, TF/IDF, etc… [13]. Some

ranking methods use both of them like Termhood (TH).

This study aims to build a model for automatic Arabic domain-relevant term

extraction from multiple domains corpus. The model depends on the prevalence and

tendency measures for ranking the extracted candidate term on the target domain and

across the rest of the corpus. We expect to have pure domain-relevant terms matrix as an

output of the model. This matrix could be helpful in classifying document, automatic

library indexing, and other lingual application. Depending on the type of the corpus this

model could be used in generating spam mail matrix for spam mail detection.

1.1 Problem statement

The Existing Arabic domain-relevant term extraction methods and models

depend on a single domain to measure the term relevancy for specific domain.

Therefore Arabic Domain-relevant Term Ranking needs to be enhanced depending on

prevalence and tendency of the selected domain-relevant terms within the domain and

across the irrelevant corpus. Consequently the problem in this research is how to

extract domain relevant terms from Arabic text corpus to construct a domain relevant

term matrix.

1.2 Objectives

Main objective

The vital purpose of this study is to develop a model for automatic Arabic

domain-relevant term extraction from text corpus using several domains. The

model would use linguistic methods for the term extraction, prevalence and

tendency statistical technique to rank the selected terms within the domain and

across the irrelevant domains. Hence forth to distribute these terms over the

domains depending on their rank value to construct a domain term matrix.

Specific objectives

- To select a corpus from several domain specific corpuses, preprocess it, and

construct a word vector containing tokens extracted from this corpus.

- To extract candidate terms the word vector using sliding window.

- To rank the extracted terms depending on distributional behavior (prevalence

and tendency) for each term within the domain and across other domains using

the Termhood method.

- To assign the extracted terms to the strongest domain and remove it from the

other domains.

www.manaraa.com

3

- To realize the model through a term extraction system and evaluate its accuracy

using the precision and recall measures.

1.3 Importance of the research

To our knowledge, there exists no similar research in Arabic term extraction that

combines both the linguistic as well as the statistical techniques to extract terms.

This research will assist other natural language possessing applications such as

automatic translation, question answering, document classification, ontology

building, etc… By introducing a domain term matrix; and a method for domain

relevant term extraction.

The research will help to improve the precision and recall for domain-relevant

term extraction which affects the automatic ontology learning process for Arabic

language.

Arabic natural language text processing domain will benefit from this model to

support Arabic knowledge management.

Extracting knowledge from text is a very challenging problem and we hope this

work will help to enhance this process.

1.4 Scope and limitations of the research

Within term extraction, the research focuses on automatic term extraction with

emphasize on natural language processing such as: Part-of-speech tagging and phrase

chunking. We deal with Arabic language; therefore we use Arabic natural language

processing to deal with Arabic corpuses.

The Arabic text corpus will be divided into certain specific domains as we are

going to measure the term relevancy depending on the prevalence and tendency of the

term across the domain and the rest of the corpus.

Prevalence and tendency as statistical techniques for term ranking will be used

here as they are widely used and proven to be efficient especially for domain-relevant

term extraction.

1.5 Methodology

We present the following methodology for carrying out the objectives of the

research:

1. Build a model for automatic Arabic domain-relevant term extraction.

2. Select several domain specific corpuses.

http://en.wikipedia.org/wiki/Part_of_speech_tagging
http://en.wikipedia.org/wiki/Phrase_chunking
http://en.wikipedia.org/wiki/Phrase_chunking

www.manaraa.com

4

3. Perform the suitable preprocessing like removing punctuations, Arabic

diacritics, non-letters, definite articles, and stop words.

4. Construct a domain word vectors from the corpus

5. Combine the domain word vectors into one vector.

6. Extract terms from word vector using sliding window.

7. Calculate the occurrences of each term within the word vectors of the corpus

and number of documents the term appears in.

8. Ranking terms depending on distributional behaviors (prevalence and tendency)

of term within the target domain and also across different domains.

9. After constructing the term ranking vectors for all domains within the corpus,

find intersected terms and put them in the strongest domain and remove it from

other domains constructing the domain term matrix.

10. Evaluation of the accuracy and comparison of results:

a. Evaluate the results of the examples that use the model output.

b. Comparing the model with other models based on selected criteria.

1.6 Thesis structure

The rest of the thesis is organized as follows: Chapter 2 discusses the background

of the study and the related works that have studied term extraction issues. Chapter 3

presents the detailed development of the model. Chapter 4 describes the stages of

implementing the model. Chapter 5 evaluates the model depending on the

implementation examples in classifying documents. Chapter 6 concludes the study

and suggested future work that would be done to promote and develop the model.

www.manaraa.com

5

2 Chapter 2: Background and related work

In this chapter we present the background of term extraction by defining the word

term and talk about the characteristics and properties of terms. Also we define term

extraction and talk about the special characteristics of Arabic language. After that we

review the related work in term extraction domain and discuss methods, results, and

methodologies that are applied to evaluate the necessity of our work.

2.1 Background

2.1.1 Term definitions

There are different definitions of the word term. One such a linguistic definition

is; “Term is a noun or a compound word used in a specific context to give a dedicated

meaning” [14]. But here we should define the term depending on the purposes of the

corpus-based computational terminology extraction process which may serve like

document classification, construction of ontology’s, document indices, validation of

translation memories, and even classical terminology works.

Thus, the definition of term must clarify the purpose it serves. What is common

to the different applications however is the need to distinguish domain-specific terms

from general vocabulary [15]. Domain-specific terms are terms that have significant

meaning(s) in a specific domain [16].

Terms are habitual recurrent word combinations of everyday language [17].

Terms is albeit provisional defined as “…constructs of human cognition processes

which assist in the classification of objects by way of systematic or arbitrary

abstraction”. He acknowledges that there exists considerable divergence of opinion in

this matter and chooses to leave it more or less undefined and considered as an

“axiomatic primitive, like word or sentence” [1]. In our work we define term as a

sequence of word or verbs that do not contain a stop word.

2.1.2 Term characteristics

There are several characteristics for Term that should be available in terms to

apply a term extraction algorithm. Those characteristics are included into two

categories, Unithood characteristics which deals with terms as linguistic unit of some

sort that enters into syntactic relations with other units, and Termhood characteristics

which measures the degree to which a linguistic unit is related to domain-specific

context [18][19]. Term characteristics are:

www.manaraa.com

6

 Linguistic properties of terms

Some Terms are defined using a linguistic patterns that could only be

applied to a corpus that has been tagged using a part-of-speech tagger in pre-

processing phase [20][21].

 (2.1)

Equation (2.1) is an example for a linguistic pattern where the pattern

contains an adjective or noun which could be followed be any sequence of noun

preposition sequence. Therefore it could be applied on a tagged text to extract

candidate terms.

 Statistical properties of terms

The frequency of Term is the basic statistical property for Term in a corpus

and generally they called Unithood of Term. The basic frequency counts are

combined to compute co-occurrence measures for words. Common co-

occurrence measures are the Dice similarity coefficient [22] which means the

greater the frequency of term AB the bigger dice value will be. Point-wise

Mutual Information (PMI) and Log-Likelihood Ratio (LLR), as they listed below

in [23] and [24]. As result all these masseurs approve the relation between

compound term and its components:

(2.2)

 (2.3)

(2.4)

Equations (2.2, 2.3, and 2.4) are Examples of statistical proprieties of terms where

represents the frequencies of A, B terms and AB as a compound term of A and B. N is

the text. L is the likelihood of choices between brackets like (.

Other statistical measures for overlapped terms are [25] :

 The frequency of a term candidate as a substring of another candidate.

 The frequency of a term candidate as a modifier substring or a head.

 The number of longer candidate terms of which a candidate is a part.

 The length of term |a| is the number of words in the term.

 Distributional properties of terms

There are several distributional properties of terms. First, their distribution

within documents. Second, their distribution across documents in a corpus.

www.manaraa.com

7

Third, their distribution in a domain-specific corpus as compared to their

distribution in a contrastive corpus. Samples of these properties are [15]:

 tf-idf where tf stands for term frequency (in a given document) and idf

stands for inverse document frequency measuring the spread of a term

through the entire document collection.

(2.5)

 In equation (2.5) N is the number of documents for the corpus.

And the number of the document the term appears in.

The tf-idf is primarily used to rank documents, but it can also be

used to rank words and word sequences of a document as term

candidates.

 A simple metric that directly compares the distribution of a term in a

domain specific corpus with its distribution in a general corpus is

weirdness.

(2.6)

In equation (2.6) D is for the domain-specific corpus, G is for the

general corpus, N is for corpus size, and is for absolute frequency

of terms over the domain corpus or the general corpus.

2.1.3 Term Extraction

Term extraction (which also called terminology mining, term recognition, or

glossary extraction) is a subtask of information retrieval that extracts relevant terms

from a given corpus using statistical like prevalence and tendency and natural

language processing (NLP) methods [26][27].

As stated in Table 2.1, term-based NLP is partitioned into four sub-domains of

research [14].

Table 2.1: Term based NLP domains.

 Prior terminological data No prior terminological data

Term discovery Term enrichment Term acquisition

Term recognition Controlled indexing Free indexing

www.manaraa.com

8

Based on this division, this thesis is concerned with term acquisition (Extraction).

We should distinguish them from term checking and term spotting, which use a

validated terms to search for in a set of documents.

Term extraction consists of both mono-lingual and multi-lingual term extraction,

and single-word as well as multi-word terms. It is a major component in many

language processing models and applications.

There are four approaches for term extraction: (a) Statistical methods which use

association measures to rank MWE (Multi Word Expression) candidates. (b)

Symbolic method which use morpho-syntactic patterns. (c) Hybrid methods which

use both statistical measures and linguistic filters. And (d) Word alignment [28].

 Domain relevant term extraction

An issue of term extraction is domain relevant term extraction which is

concerned with extracting the terms relevant to specific domain. Determining the

domain of terms helps to increase the performance of the classifiers that in turn

increase the efficiency of knowledge retrieval. Many automatic term extraction

(ATE) methods used with domain-specific document were discussed, such as

TERMHOOD, UNITHOOD, C-VALUE, NC-VALUE etc... These methods are

used with machine translation, summarization, question answering, and many

important applications. These methods help in increasing the efficiency and

accuracy of these systems.

An overview of the general model for term extraction process is given in

Figure 2.1 [26].The first, process in this figure is preprocessing and the second is

term extraction and ranking the extracted terms. Then, presentation and sorting

the terms. Finally, validate of terms [4]. In each stage there are several tools and

approaches which could be used.

www.manaraa.com

9

Figure 2.1: The four modules of term extraction process [26].

 Pre-processing

In general term extraction model preprocessing step consist sub tasks:

removing no letters, syntactic tagger tagged every input sentence from input

document, and produces a list of syntactic information (Noun Phrase-NP).

Removing stop words from each of the list of NP. Finally, the list of NP should

be stemmed to produce list of clean NP, as the term candidate [4].

 Candidate term extraction

Detecting of term candidates is generally depends on morpho-syntactic

criterion [29]. Generally, linguistic-oriented techniques rely on linguistic

theories, morphological and syntactical dependency information obtained from

natural language processing. Together with templates and patterns in the form of

regular expressions, these techniques attempt to extract and identify term

candidates. There are two common approaches for extracting term candidates.

The first, requires the corpus to be tagged or parsed, and a filter is then employed

to extract words or phrases satisfying some linguistic patterns. There are two

types of filters for extracting from tagged corpus, namely, open or closed. Closed

filters, which rely on a small set of allowable part-of-speech, will produce high

precision but poor recall; On the other hand, open filters allow part-of-speech

such as prepositions and adjectives will have the opposite effect. Most of the

existing approaches rely on regular expressions and part-of-speech tags to accept

or reject sequences of n-grams as term candidates. The second, type of extraction

approach works on raw corpus using a set of heuristics. This type of approach,

does not rely on part-of-speech tags, is quite rare. Such approach has to make use

of the textual surface constraints to approximate the boundaries of term

candidates. One of the constraints includes the use of a stop word list to obtain

the boundaries of stop words for inferring the boundaries of candidates. A

selection list of allowable prepositions can also be employed to enforce

constraints on the tokens between units [30].

www.manaraa.com

10

Most of these criterion are made for English language and could be applied

to Arabic language but the precision of Arabic taggers are very low [31]. So I

used a sliding window with length from 1 to 4 for candidate term extraction [32].

 Ranking candidate terms

There are several ranking methods these measures divided into two

categories unithood and termhood. Unithood is defined as “the degree of strength

or stability of syntagmatic combinations and collocations” [11]. and calculated

only for complex terms like T-Score, NGD (Normalized Google Distance) ,

mutual information and log-likelihood, and rely simply on the occurrence and co-

occurrence frequencies from domain corpora as the source of evidence [12]. On

the other hand termhood measures the degree to which these stable lexical units

are related to domain-specific concepts like C-value, NC-value, TF/IDF, etc.

[13]. Some ranking methods use both of them like Termhood (TH).

 Term ranking metrics

There are several metrics for evaluating term extraction methods. Metric

summaries and abbreviations are listed in Table 2.2. They are based on [33] and

construct the metric tree in Figure 2.2. These metrics evaluates the extracted

terms according to the domain or corpus and do not evaluate the terms according

to the distributional behavior over the domain and across the rest of the corpus in

a separated domain corpus.

Table 2.2: Metric Summary and Abbreviations [33]

Abbreviation Metric Rational

TF Corpus Term Frequency
Rewards high term count, large

document have advantage.

LTF
Logged Corpus Term

Frequency

Minimize the effect of highly

frequent terms, similar to

normalization.

USN Document Term Frequency
Reward word that appears lots In one

document.

ED Evenly Distributed
All documents contribute same

number of terms.

BD Favor Big Documents Reward for large document.

NTF Normalized Term Frequency
Rewards high term count but negates

large document skewing.

DR Document Relativized
Less reward for large documents

penalizes verbose documents.

CR Corpus Relativized Less reward for large documents.

DRDA

Document Relativized-

Document Average

Frequency

Less reward for large documents.

CRDA

Corpus Relativized-

Document Average

Frequency

Less reward for large documents.

www.manaraa.com

11

A few multi domain metrics found in the literature one of them is a

Termhood (TH) that measures distributional behaviors within the target domain

and also across different domains as statistical evidence to quantify the linguistic

evidences in the form of candidate, modifier, and context for the term

membership to a domain [10].

Figure 2.2: Metric Hierarchical Ordering [33]

Although there are a lot of advantages for ATE such as machine translation

which helps the Arabic reader to benefit from the English content on the web,

there are few works for Arabic language and there is a need to increase this work

to support the Arabic users and the Arabic content in the Internet.

TFIDF
Term Frequency and Inverse

Document Frequency

Reward terms that are in few

documents, but that appear

frequently.

LTFIDF
Term Frequency and logged

Inverse Document Frequency

Flattens distribution of document

frequency, making outlier less

powerful.

DC Distribution Consensus
Reward terms that occur in the same

frequency in multiple documents.

BC Binary Consensus
Reward Consensus, reward minimum

frequency of one.

www.manaraa.com

12

2.2 Arabic language

 Importance of Arabic language

 Arabic language is the first language for majority of the Arabic countries

and the second language for Islamic countries. The language distinct them from

countries in other regions, and it is also a language manifest in their faith, and is

the religious language of all Muslims of various ethnicities around the world. It is

a Semitic language with 28 alphabet letters. Its writing orientation is from right-

to-left. Arabic is also considered one of the six official languages of the United

Nations and the mother tongue of more than 330 million people. The Arabic

Quran which means 'the recital' or the proclamation was revealed to Muhammad,

the Prophet of Islam making the use of Arabic wider among the Muslims, those

who profess Islam [34].

 Difficulties of Arabic language

A lot of difficulties and special issues face the automation of domain-

relevant term extraction from Arabic corpuses; for instance, at the level of

language processing there are issues that need to be addressed such as: short

vowels, absence of capital letters, affixations (for example infixes, suffixes,

prefixes, etc…). The Arabic has two genders, feminine and masculine, three

cardinality, singular, dual, and plural. At the level of Part of Speech Tagging

(POST) there are issues that need to be addressed such as complex morphology

related to nouns, verbs and particles. Arabic is also highly inflectional and

derivational, which makes morphological analysis a very complex task. Also

Arabic has three grammatical cases, nominative, genitive, and accusative. Arabic

noun is determined by its gender, cardinality, and grammatical case [34][35][36].

Arabic is a challenging language for a number of reasons [37]:

 Orthographic (الإملاء) with diacritics is less ambiguous and more

phonetic in Arabic, certain combinations of characters can be

written in different ways.

 Arabic language has short and long vowels which give different

pronunciation. Grammatically they are required but omitted in

written Arabic texts.

 Arabic has a very complex morphology as compare to English

language.

 Synonyms are widespread. Arabic is a highly inflectional and

derivational language.

 Lack of publically freely accessible Arabic Corpora.

 Lack of Arabic digital contents.

www.manaraa.com

13

 Issues to be solved in this thesis related to Arabic language

Removing the definite article (للال وال بال كال فال الـ ال) from the word.

Removing the diacritics (ـ َ َ َ ٍ َ ً ُ ٌ).

Removing stop words.

Remove punctuations.

2.3 Related Work

A lot of work in the field of domain-relevant term extraction is done in non-

Arabic languages. For example ExATOLLP [38] is a software that extracts domain-

relevant terms of syntactic annotated corpus which is a software tool that uses both

linguistic and statistical approaches to extract and select significant terms from a

domain represented by the annotated corpus. The system starts by extracting the noun

phrases form xml documents and count the iteration of each phrase and save a list of

them [38].

Also a high-performing technique for automatic extraction of shared terminology

from available documents in a given domain is designed in [39] named as

TermExtractor. It identifies relevant terms based on two steps: First, a linguistic

processor is used to parse text and extract typical terminological structures, like

compounds, adjective-noun and noun preposition noun sequences. Then, the list of

terminological candidates is purged according to, domain pertinence, domain

consensus, lexical cohesion, structural relevance, and miscellaneous filters to give a

list of terms.

The aim of this study is to construct a model for automatic Arabic domain-

relevant term extraction from corpus. For the Arabic language several works is

available for term extraction, but little work is done in the domain-relevant term

extraction. A few approaches for single domain as well as for multiple domains

automatic term extraction is done. These works mostly use what is called Field

Association (FA) to classify terms related to a specific domain [40]. The pre-

processing step is very important in the Arabic language; because it is highly

inflectional. Moreover special stemmer is designed depending on the topic of the

research and the methods that are used. In information retrieval light stemming is

widely used to keep the information value within the terms and words [41][42][34].

In building a word vector, [43] designs and implements a system for building an

Arabic lexicon with 96% accuracy. The stemming process they use is likely more

accurate. Other light stemmer approaches like the tested in [44] have low results, and

the tool proposed by [37] could be merged with Al-Shalabis tool to enhance the

www.manaraa.com

14

preprocessing stage we will try to test several preprocessing methods to choose the

best for our work.

The local grammar approach is used in [45] for the extraction of persons names

from the Arabic financial news. It is a way of describing syntactic restrictions of

certain subsets of sentences, which are closed under some or all of the operations in

the language. They define some rules (see Figure 2.3) which are based on that the

subject argument of the class of verbs known as reporting verbs (RVs) it must refer to

a person [46][47]. This approach is not efficient for the term extraction as there are no

rules for all the terms in the Arabic language. But it could be used as a part of the

system for the future developers.

On the other hand, [48] for extract multi-word terms they use the N ADJ, N1 N2

and N1 PREP N2 patterns; and the ranks of the extracted term-like units according to

their domain representatives.

A multi-word term extraction program for Arabic language is designed in [48].

They take into consideration the linguistic specifications of Arabic word like,

graphical, Inflectional, morpho-syntactic and syntactic variants. They rank the multi

word term like (MWT-like) units by means of statistical techniques, log-likelihood

ratio (LLR), FLR, Mutual Information (MI3) and t-scores.

So in the term candidate extraction process they select patterns in Table 2.3 and

we think this selection limits the probability of covering all the term forms in the

corpus although this reduces the computational time. They work with one domain

corpus and use a single domain ranking methods which could affect the prevalence

and tendency of the extracted terms to the domain [49].

Table 2.3: Patterns and Part Of Speech mapping [48].

Figure 2.3: Local grammar rule for reporting verbs [45]

www.manaraa.com

15

MWT Pattern Part of speech pattern

N1 N2 NN [P]? | NNs [P]?

N1 ADJ NN [P]? | NNs [P]? | JJ

N! PREP N2 NN [P]? | NNs [P]? | IN | NN [P]? | NNs [P]?

In Table 2.3 N stands for noun, ADJ stands for adjective and PREP stands for

preposition.

Also Khalid AI Khatib and Amer Badarneh [42] propose a two steps approach

for extracting candidate MWEs: First, using a POS (Part of Speech) linguistic filter to

extract candidate MWTs then using a bigram compound noun patterns(see Figure

2.4). Second, they assign each candidate MWT a score depending on the combination

of both the C-value ranking method and the log likelihood ration (LLR) ranking

method [50][51][52].

 In their work they use Khoja stemmer which is a root extraction stemmer that

removes the informational value of the token or word within the text. Also, he used a

Rule Based Approach for Tagging Non Vocalized Arabic Words which has its own

stemmer and concentrate on specified text; beside, he works with on domain that

could affect the resulting domain terms. They also use a bi-gram term length, and one

domain ranking methods.

A new methodology in [40] is used for building extensive Arabic dictionary

using linguistic methods to extract relevant compound as well as single Field

Association (FA) Terms from domain-specific corpora using Arabic POS as shown in

Figure 2.5.

The system in Figure 2.5 consists of a part-of-speech (POS) tagger, a FA Terms

candidate extraction module, a weighting module for candidate terms, selecting the

relevant FA Terms, and appending them to the FA Terms dictionary. In their work

Figure 2.4: Graphical model of bigram syntactic pattern [42]

www.manaraa.com

16

they use a sliding window with 10 tokens, but they extract only terms matches the

selected patterns.

Furthermore they depend on the referral corpus to rank the term to a specific

domain and the results were obtained separately for the nine domains. They do not

take into their consideration the distributional behavior of the term over the other

domains. Their methodology is tested using their method on 14 domains using 251

MB of domain specific corpora from Wikipedia and Alhyah news giving recall and

precision results around 84 percent and 79 percent respectively [40].

A new waiting function is presented in [53] for increasing the first ranked field

association terms using declinable words and concurrent words which relate to

narrow association categories and eliminate FA word ambiguity by weighting

according to the degree of importance of concurrent words.

Figure 2.5: System outline of the FA Terms selection methodology [40]

Three proposed complementary approaches to extract MWEs in [28] is

implemented:

a) A cross lingual correspondence asymmetries which relied on the

correspondence asymmetries between Arabic Wikipedia titles and titles in

21 different languages.

b) Translation-based extraction which collects English MWEs from Princeton

Word Net 3.0, translates the collection into Arabic using Google

Translate, and utilizes different search engines to validate the output.

www.manaraa.com

17

c) Lexical association measures to extract MWEs from a large unannotated

corpus.

They mention that the identification of MWEs is too complex to be dealt with by

one simple solution; but also here the researchers concentrate on general term

extraction and not the domain of the terms. Using the heeders of wiki articles limits

the number of terms that could be extracted to evaluate; and the direct translation

from other language is not suitable for the Arabic language as it is highly inflectional

and has a lot of synonyms.

A model for automatic Collocation Extraction is proposed by [6]. Collocation is

“A word combination whose semantic and/or syntactic properties cannot be fully

predicted from those of its components and which therefore has to be listed in a

lexicon”. They use the following structural patterns of Arabic collocation (N+N,

N+ADJ, V+N, V+ADV, ADJ+ADV, ADL+N), then, they used the joint tagging and

segmenting algorithm that used for Arabic tagging by [31] and produced a bigram

collocation depending on POS and previous patterns. Then, they selected four

association measures (LLR, X2, Mutual Information (MI), Enhanced Mutual

Information (EMI)), and they found that the log-likelihood ratio clearly outperforms

the other association measures. In their work they are also strict themselves with the

patterns that limits the number of collocation that could be extracted. They eliminate

the terms with low frequencies (see Table 2.4) which could be more representative

for specific domain than others; and they work on general corpus with no domains

that ignore the distributional behavior of the term over the domain and across the

other domains.

Table 2.4: The number of candidate pairs in collocations [6].

Patterns Freq>10 Freq<10

Noun + Noun 1284 53726

Noun + Adjective 1651 31888

Noun + Verb 286 8521

Verb + Adverb 251 6523

Adjective +

Adverb

365 7852

Adjective + Noun 985 9564

Collocation 5092 150534

A new weighting method for terms is proposed by [13] for multi domain corpus

that employs distributional behaviors of term candidates within the target domain;

and also across different domains as statistical evidence their method consists of a

www.manaraa.com

18

series of base and derived measures for recognizing terms. The base measures,

namely, domain prevalence (DP) and domain tendency (DT) capture the statistical

evidence that appear in the form of intra-domain and cross-domain term distributional

behavior. Using these base measures, four additional measures, namely

discriminative weight (DW), modifier factor (MF), average contextual discriminative

weight (ACDW), and adjusted contextual contribution (ACC) were derived to

quantify linguistic evidences in the form of candidates, modifiers and context words.

Together, these base and derived measures contribute to the computation of a final

weight known as Termhood (TH) that is used for the ranking of candidates and

selection of terms.

The mechanism for scoring and ranking candidate terms by employing

distributional behaviors within the target domain and also across different domains as

statistical evidence to quantify the linguistic evidences in the form of candidate,

modifier and context is applied on English documents only [13].

Most of the works reviewed above are dealing with one domain. This could give

a false indicator of the relation between the term and the domain. On the other hand,

the number of domains in the corpus increases the representatives of the extracted

terms for the domains. The number of the domains increases the probability of the

term to appear in several domains and competition of the domains for the term

increases. Moreover these works depend on dedicated patterns for extracting

candidate terms. This could exclude a large number of terms that might have a

significant relation to the domain. They use ranking methods that quantify the term

depending on one domain. These approaches for term candidate ranking might be

inappropriate for multi domain corpus. Ranking candidate terms depends on both

domain and cross domain validates the distributional behavior effect as a linguistic

evidence for the term membership in a domain.

www.manaraa.com

19

3 Chapter 3: Designing the Model of Term

Extraction

In this chapter we design the model that serves our objective in this study and explain

the rationale behind our choices to develop the model. The design beginning with corpus

selection and the specification of the selected corpus, the preprocessing tasks determining

which process suitable for our model, the methods for term extraction that increase the

accuracy of our model, determining the best ranking method to evaluate the term weight,

and finally choosing the term distribution process to assign a term to a domain.

3.1 The primitive model

The overall primitive model can be summarized in the following steps:

1. Preprocessing

2. Term extraction

3. Iteration counting.

4. Term candidate ranking process.

5. Ranked term distribution over the domains process.

The overall model architecture is shown in Figure 3.1.

Figure 3.1: General model architecture

Input

Output

www.manaraa.com

20

The Term extraction model begins by choosing the text corpus which should

contain several domains. This corpus is then tokenized. For each token we apply

preprocessing and add the resulting token to the word vector. Preprocessing step

includes removing punctuation, diacritics, non-letters and stop words. If the extracted

token is blank we add the blank to the word vector because it is important for term

extraction.

After that, we use a sliding window with lengths from one to four that slides over

the resulting word vector and add the extracted term to the term candidate vector. If

the term extracted by the sliding window contains blank we do not add it to the term

candidate vector. Simultaneously, we count the term iteration over the domain and

the number of the documents the term appears in for each domain and save the

resulting vector to files.

Next, we use the saved statistics for ranking each domain term candidate to the

domain and do this for all the domains. The ranking method measures the

distributional behavior of the candidate term over the domain and across the rest of

the corpus.

Finally, we compare the ranking value for candidate term over the entire domain

and save the term to the vector of the domain with the highest rank value. On the

whole, we present these steps in more details.

3.2 Corpus selection stage

The model should extract the domain relevant terms from Arabic corpus so it

needs to handle a corpus with the following properties:

1. A big corpus that could give a good distributional behavior for the terms.

2. The corpus should be separated into domains.

3. It should be gathered from several sources.

There are several corpora on the Internet which have been used for term

extraction and we will review them depending on the above properties:

The corpus gathered by [54] is quite big (800 Mb), contains 113 million words

and taken from newspaper sites but it is not separated into domains 1.

Tashkeela (Arabic diacritics) is an Arabic vocalized texts corpus contains 6

million words, 122 Mb compressed taken from books from Al-Shamela library. Its

size is acceptable but it is not separated into domains2.

1 http://aracorpus.e3ra-b.com/argistestsrv.nmsu.edu/AraCorpus/
2 http://sourceforge.net/projects/tashkeela

http://shamela.ws/
http://aracorpus.e3ra-b.com/argistestsrv.nmsu.edu/AraCorpus/
http://sourceforge.net/projects/tashkeela/

www.manaraa.com

21

ALWatan&AlKhaleej corpus was gathered by [55] from Alwatan and Alkhalej

newspapers. It’s about 14 Mb size. It is separated into six domains. This corpus is

from one source and it could be some bias3.

Another corpus we have reviewed is the corpus gathered by [56] from Arabic

newspapers. This corpus is separated into 14 domains but comparing to its size 3.27

Mb. it’s small and we are not sure that it will clarify the real distributional behavior of

the extracted terms; but, we could use this corpus for testing and evaluation4.

Finally, we examine the OSAC (Open Source Arabic Corpora) [35] corpus

which is gathered from a specific domain sites and some newspapers, this corpus is5:

1. A big corpus (18 Mb) that could give a good distributional behavior for the

terms.

2. The corpus is separated into 10 domains.

3. It is gathered from several sources.

The size of this corpus is sufficient to characterize its domains. On the other

hand, the number of domains in the corpus increases the representatives of the

extracted terms for the domains. That means the extracted terms will represent the

domain.in other words the number of terms appear in more than one domain will

increase and the unique terms will have more weight than others.

3.3 Preprocessing, term extraction, and iteration counting stage

The second stage in this model is preprocessing, term Extraction, and iteration

counting stage. As shown in Figure 3.2 this stage consists of three processes start

with preprocessing which uses light stemmer that removes diacritics, punctuations,

non-Arabic letters, the definite article, and stop words. The stemmed word vector

matrix then passes to the candidate term extraction process which extracts the terms

from the stemmed word vector depending on a sliding window saving them to

candidate term vector matrix. The term iteration and document iteration counting

process counts the number of times the candidate term appears in the domain, and

also counts the number of document the candidate term appears in. Next each of these

steps is described and discussed in detail.

3 http://sourceforge.net/projects/arabiccorpus/

4 http://www.comp.leeds.a-c.uk/eric/latifa/research.htm
5 http://sourceforge.net/projects/ar-text-mining/files/

http://sourceforge.net/projects/arabiccorpus
http://www.comp.leeds.a-c.uk/eric/latifa/research.htm
http://sourceforge.net/projects/ar-text-mining/files/

www.manaraa.com

22

Figure 3.2: Preprocessing, term Extraction, Iteration counting Process.

3.3.1 Preprocessing

Preprocessing could be trivial process for some applications but in the Arabic

language applications it is very tricky process as the Arabic language is a highly

morphological language [43][47][52]. To increase the efficiency of this model a

special preprocessing steps have been implemented such as definite article, the

non-letter characters, diacritics and punctuation removal to increase the

frequencies of word without serious effect on the meaning of the word or the term.

For example when extract the root for the two words (كاتب ،كتاب) it gives the root

 .although the Symantec of the two words are deferent (كتب)

The preprocessing is performed on a row data which is a list of folders and

each folder represents a domain and contains text files encoded in UTF8. The

proposed sequence of steps for the preprocessing is as follows:

1. Start with reading the folders within the corpus folder. Each folder

represent a domain.

2. For each domain we read the file list within the folder.

3. For each file we read the content of the file in a vector.

4. For each word in the vector we do the following :

A. Remove the definite article.

B. Remove the non-Arabic letters.

C. Remove the punctuation.

D. Remove the diacritics.

E. Check if the remaining word length is greater than two if yes

i. Check if the word is not a stop word write the word to domain

stemmed word vector

www.manaraa.com

23

ii. Else add blank to the stemmed word vector.

5. Finally, write the domain stemmed word vector to a file.

The overall diagram of the preprocessing step is shown in Figure 3.3. As we

see in the figure a folder reader reads the folder names and put them in a list of

domain names. This reader generalizes our model to work with any number of

domains.

 Figure 3.3: The overall diagram of the preprocessing phase

Then for each domain we read the list of files within the domain and construct

a file list reader. Also this reader generalizes our model to work with any number

www.manaraa.com

24

of files within the domain and work with different number of files for each

domain.

 After that we read the contents of each file within the domain files listed in a

single token vector. Add each token as an element in the vector. We use Khoja

single token file reader6.

Table 3.1: Results of preprocessing step

original

text

Remove

definite

article

Remove

diacritics

Remove

punctuation

Remove non

Arabic letters

Remove

stop words

BBC BBC BBC BBC

Arabic Arabic Arabic Arabic

ط ط خ خط خط خط خط خ

 أنابيب أنابيب أنابيب أنابيب أنابيب أنابيب

از از غ غاز غاز غاز غاز غ

ر ر يمُ يمر يمر يمر يمر يمُ

ب رُ ب رُ ع عبر عبر عبر عبر ع

ي ا ك ي ا ترُ ك تركيا تركيا تركيا تركيا ترُ

 إلى إلى إلى إ ل ى إ ل ى

اد تِّح اد الْ ا تِّح اتحاد اتحاد اتحاد اتحاد َ

 أوروبي أوروبي أوروبي أوروبي أوروبي الأوروبي

ن م ن و م ومن ومن ومن و

 منتظر منتظر منتظر منتظر منتظر المنتظر

 أن أن أن أ ن أ ن

ل ت م ل ي ك ت م يكتمل يكتمل يكتمل يكتمل ي ك

رُوعُ ش رُوعُ م ش مشروع مشروع مشروع مشروع م

طِّ طِّ خ خط خط خط خط خ

 أنابيب أنابيب أنابيب أنابيب أنابيب أنابيب

 نابوكو نابوكو نابوكو نابوكو نابوكو نابوكو

، ، ،

بال غ ال بال غ بالغ بالغ بالغ بالغ َ

 طوله طوله طوله طوله طوُل هُ طوُل هُ

3300 3300 3300 3300 3300

 كيلومترا كيلومترا كيلومترا كيلومترا كيلومترا كيلومترا

، ، ،

 في في في ف ي ف ي

امِّ امِّ ع عام عام عام عام ع

2014 2014 2014 2014 2014

ل ف ة ل ف ة ب ت ك بتكلفة بتكلفة بتكلفة بتكلفة ب ت ك

ر ر تقُ د تقدر تقدر تقدر تقدر تقُ د

 ب ب ب ب ب

7 7 7 7 7

. . .

9 9 9 9 9

ات ل ي ار ات م ل ي ار مليارات مليارات مليارات راتمليا م

 يورو يورو يورو يورو يورو

6)The site for Shereen Khoja stemmer code http://zeus.cs.pacificu.edu/shereen/research.htm.

http://zeus.cs.pacificu.edu/shereen/research.htm

www.manaraa.com

25

For each token we modified the Khoja stemmer to light stem each token. We

need to be careful in choosing the type of stemming we use so that we do not

affect the iteration counting and term extraction process.

In this stemmer we remove the definite article, none Arabic letter, diacritics,

and the punctuations. Then we check if the token length is less than two letters we

add blank to the stemmed word vector. After that, we check if the resulting token

is a stop word we add blank to the vector if not we add it to the vector.

Stop words are very frequent tokens and do not have any effect on the results

and not linked to specific text or domain so we exclude them.

Table 3.2 shows a preprocessing example of the statement:

 “BBC Arabic ن المنتظر أ ن ي م اد الأوروبي و تِّح ي ا إ ل ى الْ ك ب رُ ترُ ر ع از يمُ ط أنابيب غ ل خ ت م ك

طِّ أنابيب نابوكو ، ال بال غ طوُل هُ رُوعُ خ ش امِّ 0033م ر ب ب ت 4302كيلومترا ، ف ي ع ل ف ة تقُ د ات 9.7ك ل ي ار م

 .”يورو

The original tokens of the text are listed in the first column and the second

column contain the same word vector after removing the definite article, the third

contains the tokens without diacritics, the fourth contains the vector without

punctuation, The fifth column shows the removal of the non-Arabic letter to give

the stemmed token vector shown in the last column. For the given statement the

result of the overall preprocessing is:

 “ الغ طوله كيا اتحاد أوروبي منتظر يكتمل مشروع خط أنابيب نابوكو بخط أنابيب غاز يمر عبر تر

 .”كيلومترا عام بتكلفة تقدر مليارات

3.3.2 Candidate term extraction

The second step in this stage is the term extraction, which begins with the

merging of the resulting words vectors from the preprocessing step into one vector

for each domain; so that, we could extract the terms for each domain and count the

iteration on it. There are several methods for the term extraction.

 For example, in morpho-syntactic patterns method (MP) the combination of

n-grams words is done by following a pattern of grammatical categories, such as

NA, or NPN. The MP method is a linguistic based method, and since the

grammatical composition of a term determines if this term will be considered as a

term.

Also the noun phrase method (NP) tries to identify n-grams annotated as a

noun phrase by the parser that is, a set of n words organized around the head of a

noun phrase. So, the NP method has more linguistic complexity, since it is based

on full syntactic analysis of the terms.

www.manaraa.com

26

In previous methods a tagger is needed but Arabic taggers is inaccurate as the

percentage of words that not found by Buckwalter Morphological Analyzer

(BMA) is about 25 percent [31].

Also they do not cover all the possible collocations in the text that could have

a big effect on the extracted collocations (terms). So, we found that the n-gram

method (NG) is the best method that cover all the possible collocation. N-gram

extracts sequences of n words from the text and uses statistical measurements to

evaluate the probability that each of the sequences has to be classified as a term,

that is, the more frequently these words appear together, the higher is the chance

that they can be considered a term [57][58][49].

For the term extraction in this model, we use a sliding n-gram window with

one to four words length to extract the candidate terms from the domain word

vector. It can be used as the length of the term that exceeded this length is

statistically les stronger. The proposed algorithm for term extraction is as follows:

1. For each domain read the stemmed word vector file and do:

2. For each term length (1 to 4) do

A. Slide the window with term length N over the domain stemmed

word vector.

B. For each extracted window do

i. If the window contains a stop word we ignore the term else add

the term to a domain term vector.

3. Finally write the domain term vectors to files.

For example, statement stated in section 3.3.1 above, the resulting term

vectors is shown in Table 3.2. The first column represents the stemmed word

vector as an output of the previous stage. When moving a window with one word

length and drop the blanks we will get the second column in the table. The same

thing is done in the third, fourth, and fifth columns, but the window size is become

two, three, four words length simultaneously and dropping any window that

contains a blank.

3.3.3 Iteration counting

The third step is iteration counting. The kind of counting we need is related to

the ranking method we intend to use for the extracted candidate terms. There are

several kinds of counters and measures. The weighting method proposed by [13]

for ranking a term over multi domains employs distributional behavior of term

candidates within the target domain and across the rest of the corpus as statistical

evidence presented in chapter two needs the following counts and frequencies to

be calculated:

1. The total frequencies of all the candidate terms ().

www.manaraa.com

27

2. The frequencies of a term within the domain ().

3. The frequencies of a term outside the domain ().

4. The number of document the term appears in over the domain ().

5. The number of document the term appears in over the rest of the corpus

().

6. The total number of term candidate ().

7. The total number of document ().

Table 3.2: Term extraction with 1 to 4 words length

Original

text

One

word

term

Two words

term
Three words term Four words term

 خط أنابيب غاز يمر خط أنابيب غاز خط أنابيب خط

 مر عبر أنابيب غاز ي أنابيب غاز يمر أنابيب غاز أنابيب خط

 غاز يمر عبر تركيا غاز يمر عبر غاز يمر غاز أنابيب

 يكتمل مشروع خط أنابيب يمر عبر تركيا يمر عبر يمر غاز

 مشروع خط أنابيب نابوكو يكتمل مشروع خط عبر تركيا عبر يمر

 مشروع خط أنابيب أوروبياتحاد تركيا عبر

 نابوكوخط أنابيب يكتمل مشروع اتحاد تركيا

 مشروع خط أوروبي

 أنابيب نابوكو منتظر اتحاد

 بالغ طوله يكتمل أوروبي

 بتكلفة تقدر مشروع

 نابوكو منتظر

 بالغ

 طوله يكتمل

 كيلومترا مشروع

 عام خط

 بتكلفة أنابيب

 تقدر نابوكو

 مليارات

 بالغ

 طوله

 متراكيلو

 عام

 بتكلفة

 تقدر

 مليارات

We use this methodology for term ranking because we are using several

domain corpus and this methodology quantify the three types of linguistic

www.manaraa.com

28

evidences (Candidate evidence, Modifier evidence, Contextual evidence) derived

from the prevalence and tendency measures and adjust the contribution of the

contextual weight.

Our model calculate all the previous frequencies in the term extraction stage

and save the results in files for each term length and domain to be retrieved in the

ranking process. How we use these frequencies is discussed next in the term

ranking process.

The proposed algorithm for iteration counting is as follows:

1. For each domain read extracted term candidate vectors with length (1

to 4).

2. For each term within the vector.

A. Count the frequencies of a term within the vector.

B. Count the number of document the term appears in over the

domain.

3. Finally, write the domain iteration counting vector to a file.

The overall process for term extraction and iteration counting is presented in

Figure 3.4. The process starts by reading the domains. For each domain we read

the stemmed token vector.

Beginning with the first token we move a sliding window over the vector

from the beginning to the end; and, for each window we check if the term snapped

by the window contains a blank we ignore the current term if not we check if the

term have been already taken; before we increase the term counter if not we add

the term to the term candidate vector and check if it is the first time appear in the

current document we increase the document counter. This process is repeated for

each window size.

Finally, we store the term candidate, term iteration, and document iteration

into files to be retrieved in the ranking stage.

In this process we exclude the windows that contain blanks these blanks

replaced the stop words and other nun Arabic word in the original text.

The resulting term candidate and iteration matrix depending on the example

we use in section 3.3.2 above is shown in Table 3.3. As we see in this table for

each term length we count the number of times the term appear in the domain and

the number of document the term appears in. We notice that the number of

iteration decreases when the term length increases but the rank of the term increase

as we will see in the section.

www.manaraa.com

29

For example, the simple term (عام) iterate 8127 times over 1877 document.

This means that the term is frequent over the document but this does not mean the

term is domain representative. If it's frequent over the rest of the corpus is greater

than in this domain this means it is not domain relevant. On the other hand, a term

like (نابوكو) could be domain representative if it does not located in the rest of the

corpus although it frequent in the domain is 2. As for the complex term the

evidence will be calculated depending on the prevalence and tendency of the term

itself and also on the head and the modifier of the term over the domain, and

across the rest of the corpus. A detailed example will describe the use of these

frequencies in calculating the rank value of the term in the next section.

www.manaraa.com

30

Figure 3.4: Term candidate extraction and iteration counting

3.4 Term candidate ranking stage

Term candidate ranking is the third stage of this model. In this stage we are going to

give a value for each term candidate this value will be used in the evaluation of the

relevancy of the term to the domain. Then, we store these values in a matrix with two

columns for each domain one for the term and the other for the rank value[59][60]. The

ranking methodology used by [13] will be as follows:

www.manaraa.com

31

The Termhood of term () is the final ranking value of the term and as we

see in equation 3.1. The rank value depends on the candidate evidence, in the form of

discriminative weight of the term (Equation 3.1), and the adjusted contextual

contribution of this term (Equation 3.7) contextual evidence [13].

 (3.1)

Table 3.3: The iteration matrix for economy domain

One
word

term

T
er

m
 i

te
ra

ti
o
n

D
o

c
it

er
at

io
n

Two words

term

T
er

m
 i

te
ra

ti
o
n

2

D
o

c
it

te
ra

ti
o
n

2

Three words

term

T
er

m
 i

te
ra

ti
o
n

3

D
o

c
it

te
ra

ti
o
n

3

Four words term

T
er

m
 i

te
ra

ti
o
n

4

D
o

c
it

te
ra

ti
o
n

4

 1 1 مشروع خط أنابيب نابوكو 1 1 خط أنابيب غاز 15 24 خط أنابيب 117 169 خط

 1 1 مشروع خط أنابيب 3 3 أنابيب غاز 52 87 أنابيب

 1 1 خط أنابيب نابوكو 4 6 بر يمر ع 161 550 غاز

 3 3 عبر تركيا 53 59 يمر

 187 470 أوروبياتحاد 500 769 عبر

 1 1 يكتمل مشروع 50 66 تركيا

 5 5 مشروع خط 475 1287 اتحاد

 1 1 أنابيب نابوكو 356 1052 أوروبي

 1 1 بالغ طوله 57 64 منتظر

 7 9 كتملي

 336 937 مشروع

 2 2 نابوكو

 191 227 بالغ

 5 7 طوله

 7 9 كيلومترا

 1877 8127 عام

 33 52 بتكلفة

 92 101 تقدر

 537 878 مليارات

The discriminative weight is measured using the equation 3.2. As shown in the

equation, this measure depends on Cross-domain distributional behavior (domain

tendency of the term) and Intra-domain distribution (domain prevalence of the

term).

 (3.2)

The domain tendency of the term is measured depending on the frequencies of a

term within the domain and frequencies of a term outside the domain as shown in

equation 3.3.

www.manaraa.com

32

 (3.3)

Where Is the frequencies of a term within the

domain, is frequencies of a term outside the domain.

The domain prevalence of the term depends on the term itself for simple term (one

word term) it is measured using equation 3.4 and for complex term (more than one word

term) it is measured using equation 3.5. The prevalence for simple term is measured

depending on the frequencies of the term over the domain and across the rest of the

corpus and the total frequencies of it to the total terms iterations. On the other hand, the

prevalence for complex term depends on the prevalence for the header of the term and

the value of the modifier evidence of the term.

The modifier evidence of term (in the form of modifier factor) is calculated using

the equation 3.6. As shown in the equation the modifier factor depends on the

summation of frequencies of all the modifiers of the term over the domain and across

the rest of the corpus.

(3.6)

Where is all the modifiers of term . and is all the term candidate.

The adjusted contextual contribution of the term () as contextual evidence

is calculated using equation 3.7. From the equation we found that adjusted contextual

contribution depends on the adjustment of the contextual discriminative weight and the

discriminative weight itself.

(3.4)

 (3.5)

 Where is the summation of frequencies of all the terms. is the

frequencies of a term within the domain. frequencies of a term

outside the domain. the modifier factor. the domain

prevalence of the term header.

www.manaraa.com

33

(3.7)

Where is the average contextual discriminative weight.

 is the discriminative weight.

The adjusted contextual discriminative weight of the term () is

calculated using equation 3.8. From the equation we found that it depends on

discriminative weight of all the context words of the term and the similarity between the

term and its context words (equation 3.9).

(3.8)

 (3.9)

Where is all the context words of term and is the number

of these words. And is the similarity between . Where θ

is a constant for scaling the distance value of NGD (Normalized Google

Distance).

The similarity is calculated using Google normalized distance ()

equation 3.10 which depends on the number of the documents the term and its context

words appear in it.

(3.10)

Where M is the total number of documents , is the number of

document , appears in and is the number of document both

and appears in.

From the previous we found that ranking method we use quantifies the three types

of linguistic evidences derived from the prevalence and tendency measures in the form

of Candidate evidence, Modifier evidence, and Contextual evidence. Furthermore to

adjust the contribution of the contextual weight to the overall termhood they employ

two measures the adjusted contextual contribution and the normalized Google distance.

www.manaraa.com

34

3.4.1 How the ranking process work

To clarify the practical implementation for the ranking stage we will rank the

following term (يطرح أسهم شركة مدمجة). Depending on the ranking methodology we

discuss before the rank is given by the equation described in equation (3.1) for the

domain (اقتصاد)7.

7 * The direction of reading of the terms is from left to right. and the transliteration of tem يطرح أسهم شركة

 is (yatrah ashm shrkh mdmjh) an its meaning is (Raises merged stocks company) مدمجة

www.manaraa.com

35

www.manaraa.com

36

Where , is the number of document , appears in.

DW for one word term is calculated by the equation

Then, the ranking of term يطرح أسهم شركة مدمجة over the domain اقتصاد value is: 239.

If the term occurs in other domains we compare the ranking value and assign the term

to the domain with large rank value.

The overall diagram for term ranking is shown in Figure 3.5. From the flowchart

we found the process is begin by reading the vector of term candidate and term

iteration and document iteration from the saved files for each domain; then, for each

www.manaraa.com

37

term we read the document iteration and term iteration for the term and pass these

values to the ranking procedure. Then, save the rank value for the term into the rank

vector. Finally saving the vectors to a file.

The term will have a rank value for each domain it appears in. An example, of the

resulting rank vector values will be like displayed in Table 3.4 depending on the

example we use in sections 3.3.1 above, 3.3.2 above, and 3.3.3 above. This table is a

ranking matrix for one domain. In this matrix the value zero means this term is weakly

relevant to this domain and any term with 0 rank value will be excluded from the term

comparison between domains, the bigger the value the strongest the relation will be.

That does not mean the term with big value is related to this domain. May be, this term

have a larger value in other domain. Also, we can see that the more the term size

increase the stronger the relation to the domain will be.

www.manaraa.com

38

Figure 3.5: The flow chart of the ranking process

www.manaraa.com

39

Table 3.4: Term ranking matrix for one domain

One

word

term

Rank

value
Two word term

Rank

value
Three word term

Rank

value
Four word term

Rank

value

 009 مشروع خط أنابيب نابوكو 165 خط أنابيب غاز 239 خط أنابيب 0 خط

 137 مشروع خط أنابيب 0 أنابيب غاز 110 أنابيب

 57 خط أنابيب نابوكو 0 يمر عبر 128 غاز

 84 عبر تركيا 0 يمر

 471 أوروبياتحاد 0 عبر

 0 يكتمل مشروع 0 تركيا

 263 مشروع خط 0 اتحاد

 318 أنابيب نابوكو 213 أوروبي

 0 بالغ طوله 0 منتظر

 0 يكتمل

 0 مشروع

 161 نابوكو

 0 بالغ

 0 طوله

 0 كيلومترا

 0 عام

 245 بتكلفة

 0 تقدر

 381 مليارات

3.5 Term Distribution stage

The fourth stage in this model is term distribution over the domains. This process

is done by assigning each term in the candidate term matrix to a specific domain

depending on the rank value of the term. It's needed to construct a matrix for domain

terms to be used in a classifier for testing the accuracy of term extraction model.

In this stage we use a simple method for term distribution. If the term exists in

several domains we put the term in the domain which have the highest rank value and

remove it from the other domains.

www.manaraa.com

40

Depending on the same example in section 3.4.1 above and after ranking the

example term vector to the ten domains we got the Table 3.5.

Table 3.5: Comparing rank results of candidate terms from the sample over the

domains

term Rank values for the domains

1 2 3 4 5 6 7 8 9 10

 no no no no no no 0 0 0 0 خط

 no no no no no 0 0 no 0 110 أنابيب

 no no no no no 0 0 0 0 128 غاز

 no no no no no 0 0 0 0 0 يمر

 no no no no no 0 0 0 0 0 عبر

 no no no no no 0 0 0 023 0 تركيا

 no no no no no 0 0 no 0 0 اتحاد

 no no no no no 0 no no 0 213 أوروبي

 no no 0 0 no 0 161 0 0 0 منتظر

 no 0 0 no 0 0 0 0 0 0 يكتمل

 no 0 0 0 0 0 0 0 0 0 مشروع

 no 0 no no no no no no no 161 نابوكو

 0 0 0 0 0 128 161 0 0 0 بالغ

 0 0 0 0 0 0 0 0 0 0 طوله

 no 0 0 0 no 0 no 0 0 0 كيلومترا

 0 0 0 0 0 0 0 0 0 0 عام

 no 77 0 0 no no no 0 0 245 بتكلفة

 no 0 0 0 0 0 0 0 0 0 تقدر

 no 0 0 0 0 no 0 0 0 381 مليارات

 no no no no no no no no no 239 خط أنابيب

 no no no no no no no no no 0 أنابيب غاز

 no no no no no no no no no 0 يمر عبر

 no no no no no no no no no 84 عبر تركيا

 no no no no no no 0 no no 471 اتحاد أوروبي

وعيكتمل مشر 0 no no no no no no no no no

 no no no no no no no no no 263 مشروع خط

 no no no no no no no no no 318 أنابيب نابوكو

 no no no no no no no no 0 0 بالغ طوله

 no no no no no no no no no 165 خط أنابيب غاز

 no no no no no no no no no 137 مشروع خط أنابيب

أنابيب نابوكوخط 57 no no no no no no no no no

كومشروع خط أنابيب نابو 009 no no no no no no no no no

www.manaraa.com

41

As shown in the table there is a rank values for domain 1 more than the other

domains because the example is taken from it.

Also we notice that there are some terms do not appear in the other domains these

terms are marked as (no). Other terms, there rank value is (0) this means the term is

weekly relevant to the domain.

Some terms are ranked over several domain like (بتكلفة), ranked for domain 1 and

domain 5. The winner domain is the domain with higher rank value.

Some domains do not rank any term of the sample although they are existing in the

candidate terms of the domain. This means all the terms of the example are not related

to these domains.

Terms like (تركيا) is not ranked in its original domain (domain 1) and ranked in

other domain (domain2). This means the term is strongly related to the other domain.

Also we found that the complex terms (terms with two and more words) are

stronger than the terms with one word to the target domain because the complex terms

is less frequent the simple term.

Finally, the strongest relation between term and domain is always found in the

complex terms.

The final domain term matrix for the previous sample will be as shown in Table

3.6. In this table we exclude the terms with rank value zero and the term go to the

winner domain.

Table 3.6: Sample of Domain term matrix

1 2 3 4 5 6 7 8 9 10

اتركي أنابيب منتظر

 بالغ غاز

 أوروبي

 نابوكو

 بتكلفة

 مليارات

 خط أنابيب

 عبر تركيا

 اتحاد أوروبي

 مشروع خط

 أنابيب نابوكو

 خط أنابيب غاز

 مشروع خط أنابيب

 خط أنابيب نابوكو

كومشروع خط أنابيب نابو

www.manaraa.com

42

4 Chapter 4: Realization of the Model

In this chapter we present the implementation of the model over a real corpus and the

difficulties that faced the implementation of the model. We discuss some programming

problems and the solution to these problems like corpus size, reading the corpus, stemmer

modification, and other problems.

4.1 Component diagram

To realize the model we divide it into four main components: candidate term

extraction component, term ranking component, term distribution component, and the

classifier component. As shown in the component diagram in Figure 4.1, it's clear that

the preprocessing component needs the corpus as input and give term candidate matrix,

term iteration matrix, and document iteration matrix outputs are needed as output.

These three outputs are needed to the ranking component to give the rank matrix for

term distribution component. The term distribution distribute the terms and give a

domain term matrix to the classifier component to classify the testing documents

giving the classifier results report to evaluate the model.

Figure 4.1: The model component diagram

Next we will discuss each component separately.

www.manaraa.com

43

4.2 Class diagrams

 Class diagram for term extraction and iteration counting.

As shown in Figure 4.2 the class diagram of candidate term extraction and

iteration counting is composed of 10 classes. The main class of this diagram is the

StartTermCandidateExtractionProcess class. This class uses the ListOfDomain

class to read the directories of the corpus and save their name as the list of domain.

Then, use the ListOfFiles class to read the files within the domain directory and

save them into a list of files to let the SingleTokenFileReader class read the content

of the files as tokens and put them in a token vector. While reading the file the

StartTermCandidateExtraction instantiate a ModifiedLightStermmer class that

starts the LoadStemmerFile class to read the stemmer files and save their content to

vectors that will be used in the ModifiedLightStermmer to stem each token in the

token vector and then save the outputs of the stemming process into a stemmed

token vector. This vector is used to extract candidate terms and count the iteration

for these terms. Finally, it calls the vector to file writer to write the vectors to files.

Figure 4.2: The candidate term extraction class diagram

www.manaraa.com

44

When adding a candidate term the class calls the TermIndexRetreval class

to find if the term is already exists; if not, it adds it to the statistics vectors and

instantiate the counters of the term.

 Class diagram for term ranking.

The class diagram of the second component of the model described in

Figure 4.3 contains the StartRankingProcess class that starts the ranking process by

calling the ListOfDomains class that reads the list of domains then starts

LoadStatistics class to read the data stored by the previous component then start

ranking each candidate term in the list for all the domains by calling the

TermRanker class. TermRanker calls TermIndexRetreval to retrieve the index of

the term to be used for calling the statistics of the term for completing the rank

process.

Figure 4.3: The term ranking class diagram

www.manaraa.com

45

 Class diagram for term distribution.

This class diagram describes the content of term distribution component as

shown in Figure 4.4. This class starts with calling LoadRankresultsAndTerms to

read the rank matrix and candidate term matrix for the entire domain by calling

ListOfDomains class. Rank matrix and candidate term matrix are then passed to

TermDistriputionProcess to start the candidate term distribution. At the end,

TermDistriputionPr-ocess calls VectorToFileWriter to write the domain term

matrix to a file to be used in the next component.

Figure 4.4: The term distribution class diagram

 Class diagram for classifying documents.

The final class diagram is the classifier diagram shown in Figure 4.5. It

loads the domain term matrix using the LoadDistriputedDomainWords class to be

passed to TestingStage class that reads the document to be classified and there

domains using three classes ListOfDomains, ListOfFiles, and VectorToFileWriter.

Then passes all the data to ClassifyDocument class to be classified. It calls the

ModifiedLightStemmer class to stem the document before being classified. Finally,

it calls the VectorToFileWriter class to write the classify report to a file.

www.manaraa.com

46

Figure 4.5: The classifier class diagram

4.3 Tools used

We use Eclipse as a java programming language because we have some

experience with it and it is a very flexible environment and java have a lot of tools that

could be very helpful. Also, java is very efficient language in memory management

and have the ability to construct vectors that have the ability to change its size in

running time.

We use Shereen Khoja Stemmer after modifying it for light stemming the tokens

from the corpus because it is written in java, easy to understand, and modify.

We used IBM Rational Software Architect version 8.0. For class diagram drawing

because it support reversal engineering.

We used Smart draw 2010 for drawing flow charts and component diagram.

We have programmed and develop some tools that help us in realizing the model.

These tools are:

 The domain reader that reads each folder as a domain.

www.manaraa.com

47

 The list of files name reader which read the files names within a folder into

list.

 To read the content of each file we use Khoja single token file reader.

 To save the results into file we programmed a vector to file writer.

4.4 Problems appeared during the implementation of the model

When we try to implement the model on the real data some problems have

appeared. We list these problems first and their solutions is listed in the following part:

1. The first problem comes out is the java heap error which means that the

memory is not enough.

2. When I run the system it talks a lot of time that exceeded to several days and at

the end it terminate without giving any indication for end execution or results.

3. When the system terminates I have to start over the experiment from the

beginning.

4. We need to merge the results for the experiment.

5. As the system depend on the term occurrence there is a lot of search tasks which

take a lot of execution time which need to be enhanced.

4.5 Solutions for the implementation problems

The problems listed before have different solution but we implement the available

one’s and we listed them here:

1. For memory error we use the –Xmx command for changing the execution

memory option.

2. For execution time that ends with system termination. We try to partition our

model to several execution units we found that we could implement the

preprocessing, term extraction, and iteration counting for each domain

separately.

3. We depend on files to save the results of each stage this help in overriding any

stage we complete and continue from the last finished stage. As shown in

appendix A for the model main class. We use three types of files:

 Files for term candidate

 Files for term iteration

 Files for doc iteration.

4. In some domains the number of files was big and could not be handled

together. So we write a code for domain separation as shown in appendix B

and limits the number of files to 500.

5. After separation and processing we need to merge the results for each domain

we write a code for merging the results as shown in appendix C.

6. Also we use sorted vectors for saving the results as there is a lot of search

processes and we use a binary search algorithm (appendix D) which saves a lot of

execution time.

www.manaraa.com

48

5 Chapter 5: Experiments and Results

In this chapter we present the common term extraction metrics and the specification

for each metric. After that we clarify the simple classifier that we have design using the

extracted domain term matrix to help us in evaluating the model by quantifying the output

of this classifier. The domain term matrix is extracted using our model. We compare the

outputs and construct a confusion matrix to measure the accuracy and reliability of the

model based domain term matrix classifier.

There are several metrics for evaluating term extraction methods such as shown in

term ranking metrics in section 2.1.3 we use Termhood method that ranks the term

according to its distributional behavior over the domain and across the rest of the corpora

[13]. This measure do not evaluate the accuracy of the extracted terms. To do this we use

the extracted domain term vector matrix to classify several documents and use the

precession and recall measures to evaluate the accuracy of the model.

5.1 Evaluation methods

We will use the confusion matrix to evaluate the accuracy of the domain word

matrix classifier resulting from our model. A confusion matrix is a specific table

layout that allows visualization of the performance of an algorithm or model.

A confusion matrix [61] contains information about actual and predicted

classifications done by a classification system. Performance of such systems is

commonly evaluated using the data in the matrix. The following table shows the

confusion matrix for a two class classifier Table 5.1.

Table 5.1: Confusion matrix

 predicted

negative positive

ac
tu

al

Negative a b

Positive c d

The entries in the confusion matrix have the following meaning:

 a is the number of correct predictions that an instance is negative.

 b is the number of incorrect predictions that an instance is positive.

 c is the number of incorrect of predictions that an instance negative.

 d is the number of correct predictions that an instance is positive.

www.manaraa.com

49

The following terms are defined for a two by two confusion matrix:

Accuracy

The accuracy (AC) is the percentage of the total number of predictions

that were truthful. It is determined using the equation:

(5.1)

True positive rate (Recall, Sensitivity)

The recall or true positive rate (TP) is the percentage of positive cases

that were correctly identified, as calculated using the equation:

(5.2)

True negative rate (Specificity)

The true negative rate (TN) is defined as the percentage of negatives

cases that were classified correctly, as calculated using the equation:

(5.3)

Precision

Precision (P) is the percentage of the predicted positive cases that were

correct, as calculated using the equation:

(5.4)

False positive rate

The false positive rate (FP) is the percentage of negatives cases that were

incorrectly classified as positive, as calculated using the equation:

(5.5)

False negative rate

The false negative rate (FN) is the percentage of positives cases that were

incorrectly classified as negative, as calculated using the equation:

(5.6)

The accuracy determined by equation 5.1 may not be an adequate performance

measure when the number of negative cases is much greater than the number of

positive cases [61].

www.manaraa.com

50

Other performance measures account for this by including TP in a product: for

example the geometric mean (g-mean) [62], as defined in the following equations,

and F measure.

 (5.7)

 (5.8)

(5.9)

 has a value from 0 to infinity and is used to control the

weight assigned to TP and P.

Any classifier evaluated using equations 5.7, 5.8 or 5.9 will have a measure value

of 0, if all positive cases are classified incorrectly.

The previous measure is good for binary classification problem but when the

classification problem is not binary, the confusion matrix gets more complicated. In

this case we can compute classifier accuracy as:

(5.10)

Where i is the class number and n is the total number of the classes.

5.2 Experimental design

5.2.1 The data

We choose (OSAc corpus) [35] which is collected from various websites as

presented in Table 5.2, the corpus includes 22,429 text documents. Classified into 10

domains (Economics, History, Education and Family, Religious and Fatwa's, Sports,

Heath, Astronomy, Law, Stories, and Cooking and Recipes). The corpus contains

about 18,183,511 (18M) words and 449,600 keywords after stop words removal.

We use the UTF-8 coding system because it is universal and widely used and any

type of document (html, doc, pdf) could be easily converted into text documents so

the model will be widely applicable.

We separated the data into two parts one for training and testing. The separation

of data is done manually before the training. The testing process will be applied by

classifying the document using the extracted domain term matrix from the training

stage. The domain term matrix size is shown in Table 5.5. The classifier testing

corpus that contains 4670 document distributed into ten domains as shown in Table

www.manaraa.com

51

5.3 is classified and the results of classification process was described in the

confusion matrix in Table 5.6.

Table 5.2: OSAc corpus web site sources [35].

Domain Number of

documents

Web site's source

Economic 3102 bbcarabic.com - cnnarabic.com -aljazeera.net

- khaleej.com - banquecentrale.gov.sy

History 3233 www.hukam.net - moqatel.com -

altareekh.com -islamichistory.net

Education and

family

3608 saaid.net - naseh.net - almurabbi.com

Religious and

fatwa's

3171 CCA corpus - EASC corpus moqatel.com -

islamic-fatwa.com - saaid.net

Sport 2419 bbcarabic.com- cnnarabic.com - khaleej.com

Health 2292 dr-ashraf.com - CCA corpus - EASC corpus

- W corpus - kids.jo - arabaltmed.com

Astronomy 557 arabastronomy.com- alkawn.net-

bawabatalfalak.com- nabulsi.com-

www.alkoon.alnomrosi.net

Law 944 lawoflibya.com - qnoun.com

Stories 726 CCA corpus- kids.jo- saaid.net

Cooking recipes 2373 aklaat.com - fatafeat.com

Total 22429

Table 5.3: The number of documents to be classified for the domains

code domain
Number of

document

0 Economic 647

1 History 615

2 Education and family 712

3 Religious and fatwa's 713

4 Sport 522

5 Health 425

6 Astronomy 122

7 Law 213

8 Stories 173

9 Cooking recipes 528

www.manaraa.com

52

5.3 The classifier

The classifier we use is a simple classifier that uses the extracted domain term

vector to classify a document as shown in Figure 4.5 the API documentation of the

classifier in appendix E part vii. This classifier classifies 4670 document distributed

into ten domains. The classify process begins by loading the domain term matrix to

the memory and for each file of the testing corpus it reads the content of the file and

put each token in a vector. For each token we apply the light stemming process over

the token and check if the stemmed token is in any domain. If it found in a domain a

one is added to the domain counter and we have ten counters for the ten domains.

After finishing the document we select the domain with big counter value and classify

the document to this domain; after that, we compare the real domain with classified

domain. If they are equal, we add one to true counter if not, the one is added to the

wrong counter. The final report of the classifier gives the total true hits and the total

wrong hits for each domain.

5.4 Results and discussion

Table 5.4: Number of term candidate for the domains

code domain
Word

vector size

Term candidate size

1 2 3 4

0 Economic 1618618 63035 435188 442312 339321

1 History 3668139 154943 789543 627274 411164

2 Education and family 2241672 122038 500072 383418 251896

3 Religious and fatwa's 1527183 58452 201014 160079 108847

4 Sport 1266928 47198 231434 235817 188543

5 Health 1490953 46942 157712 124271 84680

6 Astronomy 275469 22892 63914 52381 37312

7 Law 619292 28977 77772 61927 43573

8 Stories 2065902 101488 323691 230145 146663

9 Cooking recipes 268387 14997 62530 68563 54507

After implementing the candidate term extraction process on the corpus we got

the following table that we coded the domains of the tested corpus in it from zero to

nine as shown in Table 5.4. We write down the word vector length for each domain

and for each term length the size of the term candidate. After implementing the rank

method and distribute the terms over the domain depending on the rank value for

each term to the ten domains we and exclude the terms with rank value equal or less

than zero we got Table 5.5.

www.manaraa.com

53

Table 5.5: Number of distributed terms over the domains

code domain
Word

vector size

Domain term size

1 2 3 4

0 Economic 1618618 24281 400464 433403 333269

1 History 3668139 94630 728401 610012 401045

2 Education and family 2241672 60425 447830 370287 244885

3 Religious and fatwa's 1527183 17281 170256 153029 105068

4 Sport 1266928 16623 209520 228048 181979

5 Health 1490953 16800 139945 119822 81926

6 Astronomy 275469 6079 53738 48490 34777

7 Low 619292 7316 66600 58972 41791

8 Stories 2065902 44111 282002 218437 140094

9 Cooking recipes 268387 6594 56600 64668 51641

We can conclude from comparing the one word term from Table 5.4 and Table

5.5that the distribution term process over the domains excludes a number of terms

more than the two, three, and four word terms. Figure 5.1 and Figure 5.2 clarifying

this effect. This means the one word term is less relevant to the domain.

Figure 5.1: Comparing candidate terms with distributed terms for one word

length

As result, when the term length increases the term relevancy to the domain

increases. On the other hand, we can say that the one word term is very likely to

appear in several domains more than others.

www.manaraa.com

54

Figure 5.2: Comparing candidate terms with distributed terms for four word

length

Furthermore the domain relevancy with term size effect is depicted in Figure 5.3.

It represents the economy domain and this effect is true for the other domains. As it

shows in the graph when the size of the term increased the excluded terms reduced.

Figure 5.3: Term candidate and domain terms over term size for economy

domain

As it shown in Table 5.6 the numbers from zero to nine represent the domains. REL

represents the reliability of the classifier to classify the document domain. This means that

the classifiers do not classify any document to the target domain. ACC represent the

accuracy of the classifier to classify the document domain. Which means that the

classifier will not classifies the current domain to any other domain. The confusion matrix

www.manaraa.com

55

is used for evaluating the performance of a system using the data in the matrix. Confusion

matrix contains information about actual and predicted classifications done by a

classification system [61].

Table 5.6: The classifier confusion matrix for the domains

 Real domain

0 1 2 3 4 5 6 7 8 9 Sum ACC

C
la

ss
if

ie
d

 d
o
m

a
in

s

0 634 1 0 0 6 1 0 0 0 1 643 0.99

1 13 583 8 35 22 1 1 6 35 2 706 0.83

2 0 27 682 2 0 5 0 0 1 5 722 0.94

3 0 1 10 676 0 0 0 0 0 0 687 0.98

4 0 0 0 0 494 0 0 0 1 0 495 1.00

5 0 1 0 0 0 418 0 0 0 15 434 0.96

6 0 0 0 0 0 0 121 0 0 0 121 1.00

7 0 0 0 0 0 0 0 207 0 0 207 1.00

8 0 2 12 0 0 0 0 0 136 0 150 0.91

9 0 0 0 0 0 0 0 0 0 505 505 1.00

Sum 647 615 712 713 522 425 122 213 173 528 4670

Recall 0.98 0.95 0.96 0.95 0.95 0.98 0.99 0.97 0.79 0.96

As shown from the previous table we conclude that:

The rows 4,6,7,8 which represent the domains (Sport, Astronomy, Law, Cooking

recipes) respectively could be classified with 100 percent accuracy that this document is

not a member of other domains. This returns to the nature of the domain as these domains

and the kind of words that are used in these domains.

The rest of the domains is also highly accurate except for row 1 which represent

the History domain. It can be found that the History domain do not have a unique

terms that could represent it clearly.

All the domains are highly reliable except for the story domain as the number of

wrongly classified is high in aspect to the story tested documents. The majority of

error goes to history domain as the story and history domains are close to each other.

As it shown in the table the classifier is very accurate for classifying all the

domains except for the history domain also the classifier was highly reliable for all

the domains except for the low domain. When we have review the corpus and the

errors we found that the error in caused by the weakness of the corpus because of the

few number of websites the corpus is grabbed from.

The total accuracy of the classifier which is calculated using equation 5.10 is

0.95 percent. This is a highly accurate classifier.

www.manaraa.com

56

Reliability and accuracy of classifying some domains:

The accuracy of the classifier for the sample domains in Table 5.7, Table 5.8,

and Table 5.9 is about 99 percent and the precision is about 100 percent and the recall

is 97 percent These values means that the classifier which depends on the domain

term matrix is reliable and highly accurate.

Table 5.7:Confution matrix for Economic domain

predicted

negative positive

actual
Negative 4014 9

Positive 13 634

Accuracy AC= 0.995289

Recall R= 0.979907

Specificity TN= 0.997763

Precision P= 0.986003

 FP= 0.002237

 FN= 0.020093

 G-mean1= 0.98295

 G-mean2= 0.988795

Table 5.8: Confution matrix for Sprot domain

predicted

negative positive

actual
Negative 4147 1

Positive 28 494

Accuracy AC= 0.99379

Recall R= 0.94636

Specificity TN= 0.999759

Precision P= 0.99798

 FP= 0.000241

 FN= 0.05364

 G-mean1= 0.971827

 G-mean2= 0.972693

www.manaraa.com

57

Table 5.9: Confution matrix for Astronomy domain

predicted

negative positive

actual
Negative 4548 0

Positive 1 121

Accuracy AC= 0.999786

Recall R= 0.991803

Specificity TN= 1

Precision P= 1

 FP= 0

 FN= 0.008197

 G-mean1= 0.995893

 G-mean2= 0.995893

www.manaraa.com

58

6 Chapter 6: Conclusion and Future Work

To conclude our work and discuss our contribution and state some issues that need

further research and enhancement; we developed a new model for domain relevant term

extraction from Arabic text corpus. This model is constructed through four stages: First, is

preprocessing where we modified the Khoja stemmer to be a light stemmer to suit the

domain we work with. Second, is candidate term extraction where we use the sliding

window method for length from one to four to extract the candidate terms and we

excluded the terms that contains stop words in the window. Third, is the candidate term

ranking where we implemented a termhood ranking method that takes into consideration

the distributional behavior of the terms over the domain and across the rest of the corpus.

Fourth, we used a simple method depends on the rank value for each term over the ten

domains and assigned the term to the strongest domain.

After we extracted the domain term matrix we used this matrix as classifier. We

programmed a simple classifier that use this matrix to classify the documents that need to

be classified in the testing stage. These documents is classified by converted them into

stemmed word vector and then calculate the binary distance between the document vector

and the domain vectors and give the document the domain with high distance. This

process is done for all the documents and domains to be tested. Then calculate the

confusion matrix to evaluate the efficiency of the classifier that indicates that the domain

term matrix is efficient and effective for a classifier.

Our model takes several criteria into consideration like the specification of the

corpus the model work on. The term extraction method used in extracting the candidate

terms. The ranking methodology the model use for ranking the terms. The distribution

method for distributing the terms over the domains. Finally, the evaluating methods and

tools for evaluating the model.

The model deals with several domains so the corpus should be separated into

domains. On the other hand, most of the other works deal with general corpus and others

with one domain specific corpus.

The model use the sliding window method for candidate term extraction; on the

other hand, other works deal with several methods for term extraction like (NLP

patterns, Local grammar approach, or syntactic patterns). We used this method because

the other method depend on the taggers and the existing taggers has a low accuracy –

nearly 25 percent of the words not identified by the tagger [31] which affect the

accuracy of the models.

www.manaraa.com

59

 The ranking method we used depends on several domains which measure the term

prevalence and tendency over the domain and across the rest of the corpus.

 We use a simple method for term distribution over the domains to generate the

domain relevant term matrix which depends on the ranking value for the term over all

the corpora and assign the term to the domain with high rank. Other works deal with one

domain and this differentiation is not exist on other works.

Finally, we design a classifier depending on the domain relevant term matrix to

classify a domain known document and use a confusion matrix for evaluating the model.

Although the proposed model uses a several domain corpus, it uses a light stemmer

for preprocessing; extract the candidate terms using a sliding window; and, ranks the

candidate terms using a termhood method. There are still several ways for improving the

model:

 Use several corpuses and study the effect of the corpus change on the

results.

 In the preprocessing stage we could evaluate several preprocessing options

and compare the effect of each option.

 In the term extraction stage we could use other methods for candidate term

extraction like pattern passed, local grammar or other NLP methods and

examine the model for these options.

 For the term ranking stage we could experiment several ranking methods

and compare the implementation results.

www.manaraa.com

60

References

[1] J. Sager, A practical course in terminology processing. Amsterdam/Philadelphia:

John Benjamins, 1990.

[2] S. Love, “Benchmarking the performance of Two Automated Term-extraction

systems: LOGOS and ATAO,” university of montrial, 2000.

[3] T. Vu, A. Aw, and M. Zhang, “Term extraction through unithood and termhood

unification,” in International Joint Conference on Natural Language Processing -

IJCNLP, 2008, pp. 631–636.

[4] M. Syafrullah and N. Salim, “Improving Term Extraction Using Particle Swarm

Optimization Techniques,” JOURNAL OF COMPUTING, vol. 2, no. 2, pp. 116–

120, 2010.

[5] R. Mitkov, G. Corpas, and others, “Mutual terminology extraction using a statistical

framework,” Procesamiento del lenguaje Natural, vol. 41, no. Section 2, pp. 107–

112, 2008.

[6] A. M. Saif, M. J. A. Aziz, C. Science, and S. Publications, “An Automatic

Collocation Extraction from Arabic Corpus,” Journal of Computer Science, vol. 7,

no. 1, pp. 6–11, 2011.

[7] J. Nam, “A Local-Grammar-based Approach to Recognizing of Proper Names in

Korean Texts,” in the 5th Workshop on Very Large Corpora (WVLC-5), 1997, pp.

273–288.

[8] J. Foo, “Term extraction using machine learning,” Linköping University,

LINKÖPING, 2009.

[9] S. Katz, “Distribution of content words and phrases in text and language

modelling,” Natural Language Engineering, vol. 2, no. 1, pp. 15–59, Mar. 1996.

[10] W. Wong, W. Liu, and M. Bennamoun, “Determining termhood for learning domain

ontologies in a probabilistic framework,” In Proceedings of the sixth Australasian

conference on Data mining and analytics, 2007, vol. 07, pp. 51–60.

[11] J. Foo, “Exploring termhood using language models,” in NEALT PROCEEDINGS

SERIES VOL. 12, 2011, pp. 32–35.

[12] W. Wong, W. Liu, and M. Bennamoun, “Determining the unithood of word

sequences using mutual information and independence measure,” in Proceedings of

www.manaraa.com

61

the 10th Conference of the Pacific Association for Computational Linguistics

(PACLING), 2008.

[13] W. Wong, W. Liu, and M. Bennamoun, “Determining termhood for learning domain

ontologies using domain prevalence and tendency,” in Proceedings of the sixth

Australasian conference on Data mining and analytics, 2007, vol. 70, no. AusDM,

pp. 47–54.

[14] C. Jacquemin and D. Bourigault, “Term extraction and automatic indexing,” in

Handbook of Computational Linguistics, 2003, pp. 599–615.

[15] J. S. Justeson and S. M. Katz, “Technical terminology: some linguistic properties

and an algorithm for identification in text,” Natural Language Engineering, vol. 1,

no. 1, pp. 9–27, 1995.

[16] S. N. Kim and L. Cavedon, “Classifying Domain-Specific Terms Using a

Dictionary,” Proceedings of the Australasian Language Technology Workshop, vol.

09, pp. 57–65, 2011.

[17] J. R. Firth, Papers in Linguistics 1934-1951. Oxford University Press, 1957, p. 233.

[18] K. Kageura and B. Umino, “Methods of automatic term recognition: A review,”

Terminology, vol. 3, no. 2, pp. 259–289, 1996.

[19] S. Crain, “What are Core Linguistic Properties?,” Proceedings of the 9th Conference

of the Australasian Society for Cognitive Science, pp. 67–71, 2010.

[20] H. Aliane, Z. Alimazighi, and M. Cherif, “Al-Khalil: The Arabic Linguistic

Ontology Project,” in Proceedings of the Seventh Conference on International

Language Resources and Evaluation (LREC’10), 2010.

[21] M. Hahn, “Arabic Relativization Patterns: A Unified HPSG Analysis,” Proceedings

of HPSG 2012 Conference/Ellipsis Workshop, Daejeon, Korea, 2012.

[22] L. Dice, “Measures of the amount of ecologic association between species,”

Ecology, 1945.

[23] C. Manning, P. Raghavan, and H. Schütze, Introduction to information retrieval, 1st

ed. Cambridge University Press, 2008.

[24] T. Hisamitsu, Y. Niwa, and S. Nishioka, “Term extraction using a new measure of

term representativeness,” Proceedings of the Second International Conference on

Language Recources and Evaluation (LREC 2000), pp. 13–20, 2000.

[25] K. T. Frantzi, S. Ananiadou, and J. Tsujii, “The C-value/NC-value Method of

Automatic Recognition for Multi-Word Terms,” in Proceedings of the Second

www.manaraa.com

62

European Conference on Research and Advanced Technology for Digital Libraries,

1998, pp. 585–604.

[26] L. Ahrenberg, “Term extraction: A Review,” Linköping University, 2005.

[27] A. Nazarenko and H. Zargayouna, “Evaluating term extraction,” in International

Conference RANLP 2009, 2009, pp. 299–304.

[28] M. Attia, L. Tounsi, P. Pecina, and J. van Genabith, “Automatic extraction of arabic

multiword expressions,” 23rd International Conference on Computational

Linguistics Proceedings of the Workshop on Multiword Expressions: from Theory to

Applications (MWE 2010), no. August, pp. 18–26, 2010.

[29] M. Hong, “Hybrid filtering for extraction of term candidates from German technical

texts,” in International Conference on Terminology and Artificial Intelligence(TIA-

2001), 2001.

[30] W. Wong, “Determination of unithood and termhood for term recognition,” in

Handbook of research on text and web mining technologies, 2009.

[31] S. AlGahtani, W. Black, and J. Mcnaught, “Arabic part-of-speech tagging using

transformation-based learning,” in Proceedings of the Second International

Conference on Arabic Language Resources and Tools, 2009, no. 2001, pp. 66–70.

[32] D. Kurz and F. Xu, “Text mining for the extraction of domain relevant terms and

term collocations,” in Proceedings of the International Workshop on Computational

Approaches to Collocations, 2002.

[33] C. Nemallapudi, “Evaluating Term Extraction Methods for Domain Analysis,”

Virginia Polytechnic Institute and State University, 2010.

[34] M. Beseiso, A. R. A. R. Ahmad, and R. Ismail, “A Survey of Arabic language

Support in Semantic web,” International Journal of Computer Applications IJCA,

vol. 9, no. 1, pp. 24–28, Nov. 2010.

[35] M. K. Saad and W. Ashour, “OSAC: Open Source Arabic Corpora,” International

Conference on Electrical and Computer Systems, vol. 18, 2010.

[36] M. Syiam, Z. Fayed, and M. Habib, “An intelligent system for Arabic text

categorization,” International Journal of Intelligent Computing and Information

Sciences, vol. 6, no. 1, pp. 1–19, 2006.

[37] M. K. Saad and W. Ashour, “Arabic Morphological Tools for Text Mining,”

International Conference on Electrical and Computer Systems, vol. 18, p. 19, 2010.

www.manaraa.com

63

[38] L. Lopes, P. Fernandes, and R. Vieira, “ExATOlp-an automatic tool for term

extraction from Portuguese language corpora,” Proceedings of the LTC’09, 2009.

[39] F. Sclano and P. Velardi, “Termextractor: a web application to learn the shared

terminology of emergent web communities,” Enterprise Interoperability II, pp. 287–

290, 2007.

[40] E. Atlam, M. Fuketa, K. Morita, and J. Aoe, “Automatic building an extensive

Arabic FA terms dictionary,” Proceedings of World Academy of Science,

Engineering and Technology, vol. 44, pp. 719–725, 2010.

[41] L. Larkey, L. Ballesteros, and M. Connell, “Light stemming for Arabic information

retrieval,” Arabic Computational Morphology: Knowledge-based and empirical

method,, vol. 38, 2007.

[42] K. Al Khatib and A. Badarneh, “Automatic extraction of Arabic multi-word terms,”

in Computer Science and Information Technology (IMCSIT), Proceedings of the

2010 International Multiconference on, 2010, pp. 411–418.

[43] R. Al-shalabi and G. Kanaan, “Constructing an automatic lexicon for Arabic

language,” international journal of computing &information sciences, vol. 2, no. 2,

pp. 114–128, 2004.

[44] H. K. Al Ameed, S. O. Al Ketbi, A. A. Al-Kaabi, K. Al Shebli, N. Al Shamsi, N. H.

Al Nuaimi, and S. S. Al Muhairi, “Arabic light stemmer: A new enhanced

approach,” in The Second International Conference on Innovations in Information

Technology (IIT’05), 2005, pp. 1–9.

[45] H. Traboulsi, “Arabic named entity extraction: A local grammar-based approach,”

in Computer Science and Information Technology, 2009. IMCSIT’09. International

Multiconference on, 2009, pp. 139–143.

[46] H. Traboulsi, “A local grammar for proper names,” University of Surrey, 2004.

[47] A. Al-Taani, “A rule-based approach for tagging non-vocalized Arabic words,”

Arab Journal of Information Technology (IAJIT), vol. 6, no. 3, pp. 320–328, 2009.

[48] S. Boulaknadel, B. Daille, and D. Aboutajdine, “A multi-word term extraction

program for Arabic language,” In Proceeding of the Sixth LREC, pp. 1485–1488,

2008.

[49] S. Khoja, “APT: Arabic part-of-speech tagger,” proceding of the Student Workshop

at NAACL, 2001.

[50] T. Naseem and B. Snyder, “Multilingual part-of-speech tagging: Two unsupervised

approaches,” Journal of Artificial Intelligence Research, vol. 36, pp. 1–45, 2009.

www.manaraa.com

64

[51] S. Mansour, K. Sima’an, and Y. Winter, “Smoothing a lexicon-based pos tagger for

Arabic and Hebrew,” Proceedings of the 2007 Workshop on Computational

Approaches to Semitic Languages: Common Issues and Resources, 2007.

[52] G. Kanaan, R. AL-SHALABI, and M. Sawalha, “Full automatic Arabic text tagging

system,” proceedings of the International Conference on Information Technology

and Natural Sciences, pp. 258–267, 2003.

[53] E. Atlam, “A New Weight Function for Constructing Field Association Terms using

Concurrent Words,” International Journal of Computer Science Issues, vol. 8, no. 4,

pp. 16–27, 2011.

[54] A. Abdelali, “Building a modern standard Arabic corpus,” In workshop on

computational modeling of lexical acquisition, 2005.

[55] M. Abbas and K. Smaïli, “Comparison of topic identification methods for arabic

language,” Recent Advances in Natural Language Processing (RANLP05), pp. 14–

17, 2005.

[56] L. Al-Sulaiti, “Designing and developing a corpus of contemporary Arabic,” The

University of Leeds, 2004.

[57] L. Lopes, R. Vieira, M. J. Finatto, and D. Martins, “Extracting compound terms

from domain corpora,” Journal of the Brazilian Computer Society, vol. 16, no. 4, pp.

247–259, Aug. 2010.

[58] M. Diab, K. Hacioglu, and D. Jurafsky, “Automatic tagging of Arabic text: From

raw text to base phrase chunks,” In Proceedings of HLT-NAACL 2004: Short Papers

(HLT-NAACL-Short ’04), pp. 149–152, 2004.

[59] R. Basili, A. Moschitti, M. T. Pazienza, and F. M. Zanzotto, “A contrastive

approach to term extraction,” International Conference on Terminology and

Artificial Intelligence(TIA-2001), 2001.

[60] A. Hippisley and D. Cheng, “The head-modifier principle and multilingual term

extraction,” Natural Language, vol. 11, no. 2, pp. 129–157, Jun. 2005.

[61] R. Kohavi and F. Provost, “Special Issue on Applications of Machine Learning and

the Knowledge Discovery Process,” Machine Learning, vol. 30, no. 2/3, pp. 127–

271, 1998.

[62] C. Chen, A. Liaw, and L. Breiman, “Using random forest to learn imbalanced data,”

Clefornia, 2004.

www.manaraa.com

65

Appendices

The appendices list the flow charts and java API classes we developed for model:

A. Flowchart for the model main class

B. Flowchart for domain separation

C. Flowchart for result merging for a domain

D. Flowchart for binary search with insert

E. API documentation of the module

i. Class Modified Light Stemmer

ii. Class Start Term Candidate Extraction Process

iii. Class Start Ranking Process

iv. Class Terms Ranker

v. Class Term Distribution Process

vi. Class Testing Stage

vii. Class Classify Document

F. Tracking the rank for term يوهانسون

G. Tracking the rank for term يطرح أسهم شركة مدمجة

www.manaraa.com

66

A. Flowchart for the model main class

www.manaraa.com

67

B. Flowchart for domain separation

www.manaraa.com

68

C. Flowchart for result merging for a domain

www.manaraa.com

69

D. Flowchart for binary search with insert

www.manaraa.com

70

E. API documentation of the module

Class Summary
Class Description

AADRTE

The Class AADRTE is the Main Class of the model

that calls all the sup classes to perform a complete

sequence of the model processes.

ClassifyDocument
The Class ClassifyDocument is used to classify the

document within the Testing_corpus folder.

ListOfDomains
The Class ListOfDomains read the folders in the corpus

as a domain list.

ListOfFiles The Class ListOfFiles.

LoadDistriputedDomainWord

s
The Class LoadDistriputedDomainWords.

LoadRankresultsAndTerms

The Class LoadRankresultsAndTerms for loading the

rank results from rank files in the rankrResults

directory.

LoadStatistics
The Class LoadStatistics create the vector composed of

vectors containing the statistic files.

LoadStemerFiles The Class LoadStemerFiles.

ModifiedLightStemmer The Class ModifiedLightStemmer.

SingleLineFileToVectorReade

r
The Class SingleLineFileToVectorReader.

SingleTokenFileReader The Class SingleTokenFileReader.

StartRankingProcess The Class StartRankingProcess.

StartTermCandidateExtractio

nProcess
The Class StartTermCandidateExtractionProcess.

TermDistriputionProcess The Class TermDistriputionProcess.

TermIndexRetreval The Class TermIndexRetreval.

TermsRanker The Class TermsRanker.

TestingStage The Class TestingStage.

VectorToFileWriter The Class VectorToFileWriter.

writeAllDataToOneFile The Class writeAllDataToOneFile.

../../AADRTESys/doc/AADRTE/AADRTE.html
../../AADRTESys/doc/AADRTE/ClassifyDocument.html
../../AADRTESys/doc/AADRTE/ListOfDomains.html
../../AADRTESys/doc/AADRTE/ListOfFiles.html
../../AADRTESys/doc/AADRTE/LoadDistriputedDomainWords.html
../../AADRTESys/doc/AADRTE/LoadDistriputedDomainWords.html
../../AADRTESys/doc/AADRTE/LoadRankresultsAndTerms.html
../../AADRTESys/doc/AADRTE/LoadStatistics.html
../../AADRTESys/doc/AADRTE/LoadStemerFiles.html
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html
../../AADRTESys/doc/AADRTE/SingleLineFileToVectorReader.html
../../AADRTESys/doc/AADRTE/SingleLineFileToVectorReader.html
../../AADRTESys/doc/AADRTE/SingleTokenFileReader.html
../../AADRTESys/doc/AADRTE/StartRankingProcess.html
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/TermsRanker.html
../../AADRTESys/doc/AADRTE/TestingStage.html
../../AADRTESys/doc/AADRTE/VectorToFileWriter.html
../../AADRTESys/doc/AADRTE/writeAllDataToOneFile.html

www.manaraa.com

71

i. Class ModifiedLightStemmer

java.lang.Object

 AADRTE.ModifiedLightStemmer

public class ModifiedLightStemmer

extends Object

The Class ModifiedLightStemmer. This class is a modification of khoja stemmer also we

modified the stemmer files to accept the Arabic letters only. It is also loads the stemmer

files within StemmerFiles folder. To be used in the stemming process

Field Summary
Modifier and Type Field and Description

(package

private)

LoadStemerFiles

stemerFiles

The stemmer files.

Constructor Summary
Constructor and Description

ModifiedLightStemmer()

Instantiates a new modified light stemmer.

Method Summary
Modifier and Type Method and Description

private

String
checkDefiniteArticle(String word)

Check definite article.

String formatTheWord(String currentWord)

Format the word.

private

boolean
removeNonLetter(String currentWord, StringBuffer

modifiedWord)

Removes the non Arabic letter.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

stemerFiles

LoadStemerFiles stemerFiles

The stemmer files. This variable calls the load stemmer files class to load the

stemmer files to a vector from StemmerFiles folder.

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
../../AADRTESys/doc/AADRTE/LoadStemerFiles.html
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html#stemerFiles
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html#ModifiedLightStemmer()
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html#checkDefiniteArticle(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html#formatTheWord(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html#removeNonLetter(java.lang.String, java.lang.StringBuffer)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/StringBuffer.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
../../AADRTESys/doc/AADRTE/LoadStemerFiles.html

www.manaraa.com

72

Constructor Detail

ModifiedLightStemmer

public ModifiedLightStemmer()

Instantiates a new modified light stemmer.

Method Detail

checkDefiniteArticle

private String checkDefiniteArticle(String word)

Check definite article. This method return the word removing the definite article

from it.

Parameters:

word - is the original word to be checked.

Returns:
the string contains the word without definite article.

formatTheWord

public String formatTheWord(String currentWord)

 throws IOException

Format the word. this method apply all the preprocessing steps on the word

Parameters:

currentWord - the current word

Returns:
the string returns the preprocessed word.

Throws:

IOException - Signals that an I/O exception has occurred.

removeNonLetter

private boolean removeNonLetter(String currentWord,

 StringBuffer modifiedWord)

Removes the non-Arabic letter.

Parameters:

currentWord - the current word

modifiedWord - the modified word

Returns:
True, if successful

http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/StringBuffer.html?is-external=true

www.manaraa.com

73

ii. Class StartTermCandidateExtractionProcess

java.lang.Object

 AADRTE.StartTermCandidateExtractionProcess

public class StartTermCandidateExtractionProcess

extends Object

The Class StartTermCandidateExtractionProcess. In this class we extract the candidate

terms for the corpus and counting the iteration for each term. Also we count the number of

the document the terms appear in. all the previous statistics are saved to files.

Field Summary
Modifier and Type Field and Description

(package private) int corpusNumberOfFiles

The corpus number of files.

(package private)

Vector<Vector<String>>
docIteration

The document iteration Vector.

(package private)

BufferedWriter
fileBuffer

The file buffer.

(package private)

FileWriter
fileWriter

The file writer.

(package private)

Vector<Vector<String>>
stemedfilevector

The stemmed file vector.

(package private)

ModifiedLightStemmer
stemer

instantiate The stemmer.

(package private)

Vector<Vector<String>>
termCandidate

The term candidate Vector.

(package private) int termCandidateOccurance

The term candidate occurrence.

(package private)

TermIndexRetreval
termIndex

instantiate The term index.

(package private)

Vector<Vector<String>>
termIteration

The term iteration Vector.

(package private)

VectorToFileWriter
vectorFileWriter

instantiate The vector file writer.

Constructor Summary
Constructor and Description

StartTermCandidateExtractionProcess(String corpus, int maxTokens)

Instantiates a new start term candidate extraction process.

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#corpusNumberOfFiles
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#docIteration
http://download.oracle.com/javase/7/docs/api/java/io/BufferedWriter.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#fileBuffer
http://download.oracle.com/javase/7/docs/api/java/io/FileWriter.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#fileWriter
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#stemedfilevector
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#stemer
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#termCandidate
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#termCandidateOccurance
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#termIndex
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#termIteration
../../AADRTESys/doc/AADRTE/VectorToFileWriter.html
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#vectorFileWriter
../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#StartTermCandidateExtractionProcess(java.lang.String, int)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

www.manaraa.com

74

Method Summary
Modifier and Type Method and Description

private void UpdateDocItteration(int vectorIndex)

Update doc iteration.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

termCandidate
Vector<Vector<String>> termCandidate

The term candidate Vector.

docIteration
Vector<Vector<String>> docIteration

The document iteration Vector.

termIteration
Vector<Vector<String>> termIteration

The term iteration Vector.

stemedfilevector
Vector<Vector<String>> stemedfilevector

The stemmed file vector.

corpusNumberOfFiles
int corpusNumberOfFiles

The corpus number of files.

termCandidateOccurance
int termCandidateOccurance

The term candidate occurrence.

fileWriter
FileWriter fileWriter

The file writer.

fileBuffer
BufferedWriter fileBuffer

The file buffer.

stemer
ModifiedLightStemmer stemer

../../AADRTESys/doc/AADRTE/StartTermCandidateExtractionProcess.html#UpdateDocItteration(int)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/FileWriter.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/BufferedWriter.html?is-external=true
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html

www.manaraa.com

75

instantiate The stemmer.

termIndex
TermIndexRetreval termIndex

instantiate The term index.

vectorFileWriter
VectorToFileWriter vectorFileWriter

instantiate The vector file writer.

Constructor Detail

StartTermCandidateExtractionProcess
public StartTermCandidateExtractionProcess(String corpus,

 int maxTokens)

 throws IOException

Instantiates a new start term candidate extraction process.

Parameters:

corpus - the folder name of the corpus

maxTokens - the max tokens in the term

Throws:

IOException - Signals that an I/O exception has occurred.

Method Detail

UpdateDocItteration
private void UpdateDocItteration(int vectorIndex)

Update doc iteration. this method increase the doc iteration counter for a term

Parameters:

vectorIndex - the vector index of the term.

../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/VectorToFileWriter.html
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

www.manaraa.com

76

iii. Class StartRankingProcess

java.lang.Object

 AADRTE.StartRankingProcess

public class StartRankingProcess

extends Object

The Class StartRankingProcess. This class starts the ranking process by calling the

ListOfDomains class that reads the list of domains then starts LoadStatistics class to read

the data stored by the previous component then start ranking each candidate term in the list

for all the domains by calling the TermRanker class.

Field Summary
Modifier and Type Field and Description

(package private)

Vector<Vector<String>>
rankVector

The rank vector Is the vector that will contain the rank values

for the candidate term matrix.

Constructor Summary
Constructor and Description

StartRankingProcess(String corpus, Vector<Vector<String>> termCandidate,

Vector<Vector<String>> docIteration, Vector<Vector<String>>

termIteration, int maxTermLength, int courpusFiles, int

totalCandidateTermOcurance)
Instantiates a new start ranking process.

Method Summary
Modifier and Type Method and Description

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

rankVector
Vector<Vector<String>> rankVector

The rank vector Is the vector that will contain the rank values for the candidate

term matrix.

Constructor Detail

StartRankingProcess
public StartRankingProcess(String corpus,

 Vector<Vector<String>> termCandidate,

 Vector<Vector<String>> docIteration,

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/StartRankingProcess.html#rankVector
../../AADRTESys/doc/AADRTE/StartRankingProcess.html#StartRankingProcess(java.lang.String, java.util.Vector, java.util.Vector, java.util.Vector, int, int, int)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

www.manaraa.com

77

 Vector<Vector<String>> termIteration,

 int maxTermLength,

 int courpusFiles,

 int totalCandidateTermOcurance)

 throws IOException

Instantiates a new start ranking process.

Parameters:

corpus - the corpus

termCandidate - contains the term candidates

docIteration - contains the doc iteration

termIteration - contains the term iteration

maxTermLength - is the max term length

courpusFiles - is the number of corpus files

totalCandidateTermOcurance - is the total number of candidate term occurrence

Throws:

IOException - Signals that an I/O exception has occurred.

http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

www.manaraa.com

78

iv. Class TermsRanker

java.lang.Object

 AADRTE.TermsRanker

public class TermsRanker

extends Object

The Class TermsRanker.

This class ranks a term by calling TermIndexRetreval to retrieve the index of the term to be

used for calling the statistics of the term for completing the rank process.

Field Summary
Modifier and Type Field and Description

(package private)

double
ACDWa

The ACDwa is the average contextual discriminative weight

of term a.

(package private)

double
docFreqA

The document frequency of term a is number of documents

the term a appear in.

(package private)

Vector<Vector<String>>
docIter

The dociter is the document iteration of term a.

(package private)

String
domain

The domain name.

(package private) File

[]
domainList

The domain list.

(package private)

double
DWa

The Dwa is the discriminative weight of term a.

(package private)

double
Ftc

The Ftc is frequency summation of all candidate terms within

the corpus.

(package private)

TermIndexRetreval
index

The index is the calling for term index retrieval class.

(package private)

double
M

The m is number of documents in the corpus.

(package private) int maxToken

The max token.

(package private)

double
TermFreqAD

The Termfreqad is frequency of term a over the target domain

d.

(package private)

double
TermFreqADnot

The Termfreqadnot frequency of term a over the rest of

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#ACDWa
../../AADRTESys/doc/AADRTE/TermsRanker.html#docFreqA
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#docIter
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#domain
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#domainList
../../AADRTESys/doc/AADRTE/TermsRanker.html#DWa
../../AADRTESys/doc/AADRTE/TermsRanker.html#Ftc
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/TermsRanker.html#index
../../AADRTESys/doc/AADRTE/TermsRanker.html#M
../../AADRTESys/doc/AADRTE/TermsRanker.html#maxToken
../../AADRTESys/doc/AADRTE/TermsRanker.html#TermFreqAD
../../AADRTESys/doc/AADRTE/TermsRanker.html#TermFreqADnot

www.manaraa.com

79

corpus.

(package private)

Vector<Vector<String>>
termIter

The termiter is the term iteration in corpus.

(package private) int termLength

The term length.

(package private)

Vector<Vector<String>>
terms

The terms is the terms vector.

Constructor Summary
Constructor and Description

TermsRanker(File [] domList, int courpusFiles, int

totalCandidateTermOcurance)
Instantiates a new terms ranker.

Method Summary
Modifier and Type Method and Description

private

double
ACC(String a)

Acc is a method to calculate the adjusted contextual contribution.

private

double
ACDW(String a)

Acdw is a method to calculate the average contextual discriminative

weight of term a .

private int documentFrequency(String a)

Document frequency is a method to calculate the document frequencies of

term a .

private int domainNotTermFrequency(String a)

Domain not term frequency.

private int domainTermFrequency(String a)

Domain term frequency.

private

double
DP(String a)

Dp is a method to calculate the domain prevalence for term a.

private

double
DPh(String h)

Dph is a method to calculate the domain prevalence for term header h .

private

double
DT(String a)

Dt is a method to calculate the domain tendency for term a.

private

double
DW(String a)

Dw is a method to calculate the discriminative weight for term a.

private

double
log2(double num)

Log2.

private

double
MF(String a)

Mf is a method to calculate the modifier factor for term a.

private

double
NGD(String a, String c)

Ngd is a method to calculate the normalized google distance between

http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#termIter
../../AADRTESys/doc/AADRTE/TermsRanker.html#termLength
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#terms
../../AADRTESys/doc/AADRTE/TermsRanker.html#TermsRanker(java.io.File[], int, int)
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#ACC(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#ACDW(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#documentFrequency(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#domainNotTermFrequency(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#domainTermFrequency(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#DP(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#DPh(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#DT(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#DW(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#log2(double)
../../AADRTESys/doc/AADRTE/TermsRanker.html#MF(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#NGD(java.lang.String, java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

www.manaraa.com

80

term a and term c .

double rank(String a, String domain1, Vector<Vector<String>>
termCandidate, Vector<Vector<String>> docIteration,

Vector<Vector<String>> termIteration)
Rank is a method to calculate the total rank for term a.

private

double
sim(String a, String c)

Sim is a method to calculate the similarity between term a and term c .

private

double
TH(String a)

Th is a method to calculate the termhood for term a.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

double M

The m is number of documents in the corpus.

double Ftc

The Ftc is frequency summation of all candidate terms within the corpus.

String domain

The domain name.

double docFreqA

The document frequency of term a is number of documents the term a appear in.

double TermFreqAD

The Termfreqad is frequency of term a over the target domain d.

double TermFreqADnot

The Termfreqadnot frequency of term a over the rest of corpus.

double DWa

The Dwa is the discriminative weight of term a.

double ACDWa

The ACDwa is the average contextual discriminative weight of term a.

int termLength

The term length.

Vector<Vector<String>> terms

The terms is the terms vector.

Vector<Vector<String>> docIter

The dociter is the document iteration of term a.

../../AADRTESys/doc/AADRTE/TermsRanker.html#rank(java.lang.String, java.lang.String, java.util.Vector, java.util.Vector, java.util.Vector)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#sim(java.lang.String, java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermsRanker.html#TH(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

www.manaraa.com

81

Vector<Vector<String>> termIter

The termiter is the term iteration in corpus.

File [] domainList

The domain list.

int maxToken

The max token.

TermIndexRetreval index

The index is the calling for term index retrieval class.

Constructor Detail

TermsRanker
public TermsRanker(File [] domList,

 int courpusFiles,

 int totalCandidateTermOcurance)

Instantiates a new terms ranker.

Parameters:

domList - the domain list

courpusFiles - the corpus files

totalCandidateTermOcurance - the total candidate term occurrence

Method Detail

ACC
private double ACC(String a)

Acc is a method to calculate the adjusted contextual contribution.

Parameters:

a - is the term to be evaluated.

Returns:
the double

ACDW
private double ACDW(String a)

Acdw is a method to calculate the average contextual discriminative weight of term

a .

Parameters:

a - is the term to be evaluated.

Returns:
the double

documentFrequency
private int documentFrequency(String a)

Document frequency is a method to calculate the document frequencies of term a .

Parameters:

a - is the term to be evaluated.

Returns:

http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

www.manaraa.com

82

the int

domainNotTermFrequency
private int domainNotTermFrequency(String a)

Domain not term frequency.

Parameters:

a - the term a

Returns:
the int

domainTermFrequency
private int domainTermFrequency(String a)

Domain term frequency.

Parameters:

a - the term a

Returns:
the int

DP
private double DP(String a)

Dp is a method to calculate the domain prevalence for term a.

Parameters:

a - the term a

Returns:
the double

DPh
private double DPh(String h)

Dph is a method to calculate the domain prevalence for term header h .

Parameters:

h - the term header h

Returns:
the double

DT
private double DT(String a)

Dt is a method to calculate the domain tendency for term a.

Parameters:

a - the term a

Returns:
the double

DW
private double DW(String a)

Dw is a method to calculate the discriminative weight for term a.

http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

www.manaraa.com

83

Parameters:

a - the term a

Returns:
the double

log2
private double log2(double num)

Log2.

Parameters:

num - the num

Returns:
the double

MF
private double MF(String a)

Mf is a method to calculate the modifier factor for term a.

Parameters:

a - the term a

Returns:
the double

NGD
private double NGD(String a,

 String c)

Ngd is a method to calculate the normalized google distance between term a and

term c .

Parameters:

a - the term a

c - the term c

Returns:
the double

rank
public double rank(String a,

 String domain1,

 Vector<Vector<String>> termCandidate,

 Vector<Vector<String>> docIteration,

 Vector<Vector<String>> termIteration)

Rank is a method to calculate the total rank for term a.

Parameters:

a - the term a

domain1 - is the term domain name

termCandidate - is the term candidate

docIteration - is the document iteration

termIteration - is the term iteration

Returns:
the double

http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

www.manaraa.com

84

sim
private double sim(String a,

 String c)

Sim is a method to calculate the similarity between term a and term c .

Parameters:

a - the term a

c - the term c

Returns:
the double

TH
private double TH(String a)

Th is a method to calculate the termhood for term a.

Parameters:

a - the term a

Returns:
the double

http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

www.manaraa.com

85

v. Class TermDistriputionProcess

java.lang.Object

 AADRTE.TermDistriputionProcess

public class TermDistriputionProcess

extends Object

The Class TermDistriputionProcess. a simple distribution process for distributing the terms

over the domains depending on there rank value.

Field Summary
Modifier and Type Field and Description

(package private)

Vector<Vector<String>>
domainWords

The domain words.

(package private)

TermIndexRetreval
index

instantiate The index retrievers.

(package private) int maxtoken

The maxtoken.

(package private) int minRank

The minrank is the minimum rank value that could be

accepted for the term to be distributed.

(package private)

static

Vector<Vector<String>>

rankingVector

The ranking vector.

(package private)

static

Vector<Vector<String>>

termsVector

The terms vector.

(package private)

VectorToFileWriter
writer

instantiate The vector to file writer.

Constructor Summary
Constructor and Description

TermDistriputionProcess(Vector<Vector<String>> rankVector,

Vector<Vector<String>> termCandidate)
Instantiates a new term distribution process.

Method Summary
Modifier and Type Method and Description

private void distriputeTheVector(int i, Vector<String> x)

Distribute the vector.

void startDistripution(File [] domainList, int maxtokens)

Start distribution.

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#domainWords
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#index
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#maxtoken
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#minRank
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#rankingVector
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#termsVector
../../AADRTESys/doc/AADRTE/VectorToFileWriter.html
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#writer
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#TermDistriputionProcess(java.util.Vector, java.util.Vector)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#distriputeTheVector(int, java.util.Vector)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/TermDistriputionProcess.html#startDistripution(java.io.File[], int)
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true

www.manaraa.com

86

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

rankingVector
static Vector<Vector<String>> rankingVector

The ranking vector.

termsVector
static Vector<Vector<String>> termsVector

The terms vector.

domainWords
Vector<Vector<String>> domainWords

The domain words.

maxtoken
int maxtoken

The maxtoken.

minRank
int minRank

The minrank is the minimum rank value that could be accepted for the term to be

distributed.

writer
VectorToFileWriter writer

instantiate The vector to file writer.

index
TermIndexRetreval index

instantiate The index retrievers.

Constructor Detail

TermDistriputionProcess
public TermDistriputionProcess(Vector<Vector<String>> rankVector,

 Vector<Vector<String>> termCandidate)

Instantiates a new term distribution process.

Parameters:

rankVector - the rank vector

termCandidate - the term candidate

Method Detail

distriputeTheVector

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/VectorToFileWriter.html
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true

www.manaraa.com

87

private void distriputeTheVector(int i,

 Vector<String> x)

Distribute the vector. This class distributes the candidate terms over the domain

depending on there rank value for the domains and assign the term to the domain

with higher rank value.

Parameters:

i - is the number of the vector to be distributed

x - is the vector contains the distributed terms

startDistripution
public void startDistripution(File [] domainList,

 int maxtokens)

 throws IOException

Start distribution.

Parameters:

domainList - the domain list

maxtokens - the max tokens

Throws:

IOException - Signals that an I/O exception has occurred.

http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/File.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

www.manaraa.com

88

vi. Class TestingStage

java.lang.Object

 AADRTE.TestingStage

public class TestingStage

extends Object

The Class TestingStage.

Constructor Summary
Constructor and Description

TestingStage(Vector<Vector<String>> domainWords, int maximumTermLength,

String testingCorpus)

Instantiates a new testing stage.

Method Summary
Modifier and Type Method and Description

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Constructor Detail

TestingStage
public TestingStage(Vector<Vector<String>> domainWords,

 int maximumTermLength,

 String testingCorpus)

 throws IOException

Instantiates a new testing stage.

Parameters:

domainWords - is the domain words matrix

maximumTermLength - is the maximum term length

testingCorpus - is the folder name for the testing corpus

Throws:

IOException - Signals that an I/O exception has occurred.

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
../../AADRTESys/doc/AADRTE/TestingStage.html#TestingStage(java.util.Vector, int, java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

www.manaraa.com

89

vii. Class ClassifyDocument

java.lang.Object

 AADRTE.ClassifyDocument

public class ClassifyDocument

extends Object

The Class ClassifyDocument is used to classify the document within the Testing_corpus

folder. These document should be butted in folders represents there domain.

The classification Process begins with loading the Modified light stemmer class which

loads the stemmer files that contains the stop word and other preprocessing files from the

StemmerFiles folder.

Then it loads the distributed domain word matrix from the DistriputedDomainTerms

folder. Each document represent a domain.

After that the classifier compute the binary distance between the document vector and the

domain vectors and give the document the domain with high distance.

Field Summary
Modifier and Type Field and Description

(package private) int dom

(package private) int domainsNumber

private

Vector<Vector<String>>
domainTerms

(package private) int domRankMax

(package private)

TermIndexRetreval
index

(package private) int maxToken

private Vector<String> stemedFileVector

private

ModifiedLightStemmer
stemmer

Constructor Summary
Constructor and Description

ClassifyDocument(Vector<Vector<String>> domainwords, int maxTerm)

Instantiates a new classify document.

Method Summary
Modifier and Type Method and Description

int classify(String fileName)

Classify method.

Methods inherited from class java.lang.Object

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#dom
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#domainsNumber
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#domainTerms
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#domRankMax
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#index
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#maxToken
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#stemedFileVector
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#stemmer
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#ClassifyDocument(java.util.Vector, int)
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
../../AADRTESys/doc/AADRTE/ClassifyDocument.html#classify(java.lang.String)
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true

www.manaraa.com

90

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

stemmer
private ModifiedLightStemmer stemmer

index
TermIndexRetreval index

domainTerms
private Vector<Vector<String>> domainTerms

stemedFileVector
private Vector<String> stemedFileVector

maxToken
int maxToken

domainsNumber
int domainsNumber

dom
int dom

domRankMax
int domRankMax

Constructor Detail

ClassifyDocument
public ClassifyDocument(Vector<Vector<String>> domainwords,

 int maxTerm)

Instantiates a new classify document.

Parameters:

domainwords - is the vectors of domain term matrix .

maxTerm - is the maximum number of words in the term.

Method Detail

classify
public int classify(String fileName)

 throws IOException

Classify method.

Parameters:FileName - is the name of the file to be classified

Returns:

http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#clone()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#equals(java.lang.Object)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#finalize()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#getClass()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#hashCode()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notify()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#notifyAll()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#toString()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait()
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long)
http://download.oracle.com/javase/7/docs/api/java/lang/Object.html?is-external=true#wait(long, int)
../../AADRTESys/doc/AADRTE/ModifiedLightStemmer.html
../../AADRTESys/doc/AADRTE/TermIndexRetreval.html
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/util/Vector.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

www.manaraa.com

91

This method returners the document domain as an integer value depending on the

number of domains within the corpus folder.

Throws: IOException - Signals that an I/O exception has occurred.

F. An Example of ranking the term يوهانسون

Start The ranking process for يوهانسون as one word term.
Corpus Files : 17759
Total Candidate Term Occurrence :22702550
Document Frequency of (يوهانسون) is: 1
Domain Term Frequency of (يوهانسون) is = 1
Domain Not Term Frequency of (يوهانسون) is = 0
Domain Term Frequency of (يوهانسون) is = 1
Domain Term Frequency of (يوهانسون) is = 1
Domain Not Term Frequency of (يوهانسون) is = 0
DP(يوهانسون) is:40.61552195880243
Domain Term Frequency of (يوهانسون) is = 1
Domain Not Term Frequency of (يوهانسون) is = 0
DT(سونيوهان) is:1.5849625007211563
DW(يوهانسون) is:64.37407925191854
Domain Term Frequency of (يوهانسون) is = 1
Domain Term Frequency of (يوهانسون) is = 1
Domain Not Term Frequency of (يوهانسون) is = 0
DP(يوهانسون) is:40.61552195880243
Domain Term Frequency of (هانسونيو) is = 1
Domain Not Term Frequency of (يوهانسون) is = 0
DT(يوهانسون) is:1.5849625007211563
DW(يوهانسون) is:64.37407925191854
ACDW(يوهانسون) is :64.37407925191854
Acc(يوهانسون) is :64.37407925191854
The rank of term(يوهانسون) is:128.7481585038371
ranking يوهانسون | اقتصاد Rank value=128
End of the Experiment

http://download.oracle.com/javase/7/docs/api/java/io/IOException.html?is-external=true

www.manaraa.com

92

G. An Example of ranking the term يطرح أسهم شركة مدمجة

Start The ranking process for يطرح أسهم شركة مدمجة as four words term.

Corpus Files: 17759

Total Candidate Term Occurrence: 22702550

Document Frequency of (مدمجة شركة أسهم يطرح) is: 1
Domain Term Frequency of (مدمجة شركة أسهم يطرح) is = 1
Domain Not Term Frequency of (مدمجة شركة أسهم يطرح) is = 0
Domain Term Frequency of (مدمجة شركة أسهم يطرح) is = 1
Domain Term Frequency of (يطرح) is = 42
Domain Term Frequency of (يطرح) is = 42
Domain Not Term Frequency of (يطرح) is = 193
DP(يطرح) is:45.35437395692971
Domain Term Frequency of (يطرح) is = 42
Domain Not Term Frequency of (يطرح) is = 193
Domain Term Frequency of (أسهم) is = 5094
Domain Not Term Frequency of (أسهم) is = 2798
Domain Term Frequency of (شركة) is = 4568
Domain Not Term Frequency of (شركة) is = 3018
Domain Term Frequency of (مدمجة) is = 8
Domain Not Term Frequency of (مدمجة) is = 5
MF(مدمجة شركة أسهم يطرح) is:1.386698584277142
DP(رحيط is:150.810458492347 (مدمجة شركة أسهم
Domain Term Frequency of (مدمجة شركة أسهم يطرح) is = 1
Domain Not Term Frequency of (مدمجة شركة أسهم يطرح) is = 0
DT(مدمجة شركة أسهم يطرح) is:1.5849625007211563
DW(مدمجة شركة أسهم يطرح) is:239.02892142693446
Domain Term Frequency of (يطرح) is = 42
Domain Term Frequency of (يطرح) is = 42
Domain Not Term Frequency of (يطرح) is = 193
DP(يطرح) is:45.35437395692971
Domain Term Frequency of (يطرح) is = 42
Domain Not Term Frequency of (يطرح) is = 193
DT(يطرح) is:0.0
DW(يطرح) is:0.0
Document Frequency of (يطرح) is: 198
Document Frequency of (مدمجة شركة أسهم يطرح) is: 1
Document Frequency of (مدمجة شركة أسهم يطرح) is: 1
(Math.max(0.0,5.288267030694535)- 0.0)/(9.784647708654596-Math.min(0.0,
5.288267030694535))
NGD(يطرح,مدمجة شركة أسهم يطرح)=0.5404657569855092
Sim(يطرح,مدمجة شركة أسهم يطرح) is:0.45953424301449075
Domain Term Frequency of (أسهم) is = 5094
Domain Term Frequency of (أسهم) is = 5094
Domain Not Term Frequency of (أسهم) is = 2798
DP(أسهم) is:68.02777610376341
Domain Term Frequency of (أسهم) is = 5094
Domain Not Term Frequency of (أسهم) is = 2798
DT(أسهم) is:1.0
DW(أسهم) is:68.02777610376341
Document Frequency of (أسهم) is: 2244

www.manaraa.com

93

Document Frequency of (مدمجة شركة أسهم يطرح) is: 1
Document Frequency of (مدمجة شركة أسهم يطرح) is: 1
(Math.max(0.0,7.716015266642587)- 0.0)/(9.784647708654596-Math.min(0.0,
7.716015266642587))
NGD(أسهم,مدمجة شركة أسهم يطرح)=0.7885838607983517
Sim(أسهم,مدمجة شركة أسهم يطرح) is:0.21141613920164826
Domain Term Frequency of (ةشرك) is = 4568
Domain Term Frequency of (شركة) is = 4568
Domain Not Term Frequency of (شركة) is = 3018
DP(شركة) is:67.49336833015924
Domain Term Frequency of (شركة) is = 4568
Domain Not Term Frequency of (شركة) is = 3018
DT(شركة) is:1.0
DW(شركة) is:67.49336833015924
Document Frequency of (شركة) is: 1585
Document Frequency of (مدمجة شركة أسهم يطرح) is: 1
Document Frequency of (مدمجة شركة أسهم يطرح) is: 1
(Math.max(0.0,7.368339686311381)- 0.0)/(9.784647708654596-Math.min(0.0,
7.368339686311381))
NGD(شركة,مدمجة شركة أسهم يطرح)=0.7530510965452571
Sim(شركة,مدمجة شركة أسهم يطرح) is:0.24694890345474285
Domain Term Frequency of (مدمجة) is = 8
Domain Term Frequency of (مدمجة) is = 8
Domain Not Term Frequency of (مدمجة) is = 5
DP(مدمجة) is:41.54344097198535
Domain Term Frequency of (مدمجة) is = 8
Domain Not Term Frequency of (مدمجة) is = 5
DT(مدمجة) is:1.0
DW(مدمجة) is:41.54344097198535
Document Frequency of (مدمجة) is: 12
Document Frequency of (مدمجة شركة أسهم يطرح) is: 1
Document Frequency of (حيطر is: 1 (مدمجة شركة أسهم
(Math.max(0.0,2.4849066497880004)- 0.0)/(9.784647708654596-Math.min(0.0,
2.4849066497880004))
NGD(مدمجة,مدمجة شركة أسهم يطرح)=0.2539597463064594
Sim(مدمجة,مدمجة شركة أسهم يطرح) is:0.7460402536935407
ACDW(مدمجة شركة أسهم يطرح) is :15.510665580993571
Acc(مدمجة شركة أسهم يطرح) is :-1.81562164476214E-5
The rank of term(مدمجة شركة أسهم يطرح) is:239.02890327071802

ranking مدمجة شركة أسهم يطرح | اقتصاد Rank value is : 239

End of the Experiment

